在人工智能技术迅猛发展的今天,大语言模型(LLM)已成为推动AI应用落地的关键技术之一。51CTO推出的《DeepSeek入门宝典》第1册·技术解析篇,作为该系列的开篇之作,旨在为读者提供全面、系统的DeepSeek大模型技术解析,帮助开发者、研究人员及技术爱好者深入理解其核心原理、架构设计及实际应用。本书不仅涵盖基础理论,还结合实践案例,使读者能够快速掌握DeepSeek的核心技术,并具备初步的模型优化与应用开发能力。
一、内容概览:从理论到实践的全方位解析
本书围绕DeepSeek大模型的技术体系展开,共分为以下几个核心部分:
-
大语言模型基础与DeepSeek概述
本部分首先介绍大语言模型的发展历程,包括从早期的统计语言模型(如N-gram)到现代基于Transformer架构的GPT、BERT等模型的演变。随后,重点解析DeepSeek模型的定位与特点,包括其设计目标、适用场景及相较于其他主流模型(如GPT-4、Claude等)的优势。 -
DeepSeek的核心架构解析
本书深入剖析DeepSeek的模型架构,包括Transformer的核心组件(如自注意力机制、前馈神经网络、层归一化等),并详细讲解DeepSeek在模型规模、训练策略(如分布式训练、混合精度计算)以及推理优化(如量化、剪枝)方面的创新。此外,还探讨了DeepSeek的多模态扩展能力(如文本-图像联合建模),为读者揭示其技术实现细节。 -
训练与优化策略
训练一个