给定一个整数数组,判断数组中是否有两个不同的索引 i 和 j,使得 nums [i] 和 nums [j] 的差的绝对值最大为 t,并且 i 和 j 之间的差的绝对值最大为 ķ。
示例 1:
输入: nums = [1,2,3,1], k = 3, t = 0 输出: true
示例 2:
输入: nums = [1,0,1,1], k = 1, t = 2 输出: true
示例 3:
输入: nums = [1,5,9,1,5,9], k = 2, t = 3 输出: false
思路:
维护一个大小为k的set集合,每次新加入一个值之后,去掉位于nums数组中此时左边界的元素nums[i-k-1].从set集合中找出距离当前nums[i]比较近的数的集合,判断他们是否小于等于nums[i]+t,如果有这样一个数,则返回真。
code:
class Solution {
public:
bool containsNearbyAlmostDuplicate(vector<int>& nums, int k, int t) {
int len=nums.size();
if(len<=1||k==0)return false;//1.数组不够两位比较不了 k=0或者t=0 k=0那么就是要求是同一个数,肯定不存在,如果t等于零,要求num[i],num[j]相等
set<long>ss;
long lt=t;
for(int i=0;i<len;i++)
{
if(i>k)ss.erase(nums[i-k-1]);//因为从零开始
auto it = ss.lower_bound(nums[i]-lt);//找到值大于等于nums[i]-lt的元素,此时筛选掉了值小于nums[i]-lt的元素
if(it!=ss.end()&&(*it)-nums[i]<=lt)return true;
ss.insert(nums[i]);
}
return false;}
};