给定一个整数序列:a1, a2, ..., an,一个132模式的子序列 ai, aj, ak 被定义为:当 i < j < k 时,ai < ak < aj。设计一个算法,当给定有 n 个数字的序列时,验证这个序列中是否含有132模式的子序列。
注意:n 的值小于15000。
示例1:
输入: [1, 2, 3, 4]
输出: False
解释: 序列中不存在132模式的子序列。
示例 2:
输入: [3, 1, 4, 2]
输出: True
解释: 序列中有 1 个132模式的子序列: [1, 4, 2].
示例 3:
输入: [-1, 3, 2, 0]
输出: True
解释: 序列中有 3 个132模式的的子序列: [-1, 3, 2], [-1, 3, 0] 和 [-1, 2, 0].
思路一:暴力遍历 三重循环 TLE了
思路二:存储每个位置以前(包括该位置)的当前最小值,然后从后面往前面找,设“3”所在的位置为j,“2”所在的位置为i,如果min[j]>=nums[i]说明在j往前没有小于"2"处的值,那么不存在132模式,反之则存在,返回true.这个做法是N^2的复杂度
class Solution {
public:
bool find132pattern(vector<int>& nums) {
int n=nums.size();
if(n<=2)return false;
vector<int>dp=nums;
for(int i=1;i<n;i++)
{
if(nums[i]<dp[i-1])dp[i]=nums[i];
else dp[i]=dp[i-1];
}
for(int i=n-1;i>=0;i--)
{
for(int j=i-1;j>=0;j--)
{
if(nums[j]>nums[i]&&dp[j]<nums[i])return true;
}
}
return false;
}
};
思路三:
下面这种方法利用来栈来做,既简洁又高效,思路是我们维护一个栈和一个变量third,其中third就是第三个数字,也是pattern 132中的2,栈里面按顺序放所有大于third的数字,也是pattern 132中的3,那么我们在遍历的时候,如果当前数字小于third,即pattern 132中的1找到了,我们直接返回true即可,因为已经找到了,注意我们应该从后往前遍历数组。如果当前数字大于栈顶元素,那么我们按顺序将栈顶数字取出,赋值给third,然后将该数字压入栈,这样保证了栈里的元素仍然都是大于third的,我们想要的顺序依旧存在,进一步来说,栈里存放的都是可以维持second > third的second值,其中的任何一个值都是大于当前的third值,如果有更大的值进来,那就等于形成了一个更优的second > third的这样一个组合,并且这时弹出的third值比以前的third值更大,为什么要保证third值更大,因为这样才可以更容易的满足当前的值first比third值小这个条件,参见代码如下:
class Solution {
public:
bool find132pattern(vector<int>& nums) {
int third = INT_MIN;
stack<int> s;
for (int i = nums.size() - 1; i >= 0; --i) {
if (nums[i] < third) return true;
else while (!s.empty() && nums[i] > s.top()) {
third = s.top(); s.pop();
}
s.push(nums[i]);
}
return false;
}
};