如果正整数可以被 A 或 B 整除,那么它是神奇的。
返回第 N 个神奇数字。由于答案可能非常大,返回它模 10^9 + 7
的结果。
示例 1:
输入:N = 1, A = 2, B = 3 输出:2
示例 2:
输入:N = 4, A = 2, B = 3 输出:6
示例 3:
输入:N = 5, A = 2, B = 4 输出:10
示例 4:
输入:N = 3, A = 6, B = 4 输出:8
提示:
1 <= N <= 10^9
2 <= A <= 40000
2 <= B <= 40000
思路:
神奇数字的产生:A的倍数,B的倍数,A和B的公倍数
那么根据容斥原理,给定一个数N,那么小于等于N的数字中,神奇数字的个数应该为N/A+N/B-N/AB的最小公倍数
而最小公倍数等于A*B/AB的最大公约数;
建立一个大区间,通过二分法来求解,大区间的mid,可以知道mid左边有mid/A个A,mid/B个B ,mid/G个AB的最小公倍数,mid/A+mid/B-mid/g就代表mid左边有多少个满足条件的数。然后二分法求解,直到找到一定个数的满足条件的数。
Code:
class Solution {
public:
int gcd(int a,int b)//求最大公约数
{
return b==0?a:gcd(b,a%b);
}
int nthMagicalNumber(int N, int A, int B)
{
long long low=0,high=2000000000000000000L;
int g=A*B/gcd(A,B);
while(low<high)
{
long long mid=(low+high)/2;
long long t=mid/A+mid/B-mid/g;
if(t<N)
{
low=mid+1;
}
else
high=mid;
}
return (int)(high%1000000007);
}
};