#!/usr/bin/env python
import numpy as np
import random
from utils.gradcheck import gradcheck_naive
from utils.utils import normalizeRows, softmax
def sigmoid(x):
"""
Compute the sigmoid function for the input here.
Arguments:
x -- A scalar or numpy array.
Return:
s -- sigmoid(x)
"""
### YOUR CODE HERE
s = 1 / (1 + np.exp(-x))
### END YOUR CODE
return s
def naiveSoftmaxLossAndGradient(
centerWordVec,
outsideWordIdx,
outsideVectors,
dataset
):
""" Naive Softmax loss & gradient function for word2vec models
Implement the naive softmax loss and gradients between a center word's
embedding and an outside word's embedding. This will be the building block
for our word2vec models.
Arguments:
centerWordVec -- numpy ndarray, center word's embedding
(v_c in the pdf handout)
outsideWordIdx -- integer, the index of the outside word
(o of u_o in the pdf handout)
outsideVectors -- outside vectors (rows of matrix) for all words in vocab
(U in the pdf handout)
dataset -- needed for negative sampling, unused here.
Return:
loss -- naive softmax loss
gradCenterVec -- the gradient with respect to the center word vector
(dJ / dv_c in the pdf handout)
gradOutsideVecs -- the gradient with respect to all the outside word vectors
(dJ / dU)
"""
### YOUR CODE HERE
### Please use the provided softmax function (imported earlier in this file)
### This numerically stable implementation helps you avoid issues pertaining
### to integer overflow.
y_hat = softmax(np.dot(centerWordVec, outsideVectors.T))
delta = y_hat.copy()
delta[outsideWordIdx] -= 1
loss = -np.log(y_hat)[outsideWordIdx]
gradCenterVec = np.dot(delta, outsideVectors)
gradOutsideVecs = np.dot(delta[:, np.newaxis], centerWordVec[np.newaxis, :])
### END YOUR CODE
return loss, gradCenterVec, gradOutsideVecs
def getNegativeSamples(outsideWordIdx, dataset, K):
""" Samples K indexes which are not the outsideWordIdx """
negSampleWordIndices = [None] * K
for k in range(K):
newidx = dataset.sampleTokenIdx()
while newidx == outsideWordIdx:
newidx = dataset.sampleTokenIdx()
negSampleWordIndices[k] = newidx
return negSampleWordIndices
def negSamplingLossAndGradient(
centerWordVec,
outsideWordIdx,
outsideVectors,
dataset,
K=10
):
""" Negative sampling loss function for word2vec models
Implement the negative sampling loss and gradients for a centerWordVec
and a outsideWordIdx word vector as a building block for word2vec
models. K is the number of negative samples to take.
Note: The same word may be negatively sampled multiple times. For
example if an outside word is sampled twice, you shall have to
double count the gradient with respect to this word. Thrice if
it was sampled three times, and so forth.
Arguments/Return Specifications: same as naiveSoftmaxLossAndGradient
"""
# Negative sampling of words is done for you. Do not modify this if you
# wish to match the autograder and receive points!
negSampleWordIndices = getNegativeSamples(outsideWordIdx, dataset, K)
indices = [outsideWordIdx] + negSampleWordIndices
### YOUR CODE HERE
### Please use your implementation of sigmoid in here.
gradOutsideVecs = np.zeros(outsideVectors.shape)
gradCenterVec = np.zeros(centerWordVec.shape)
loss = 0.0
# allVecs = outsideVectors[indices]
# allScores = np.dot(allVecs, centerWordVec)
# loss = - np.log(sigmoid(allScores[0])) - np.sum(np.log(sigmoid(-allScores[1:])))
# # maybe the equation below is wrong
# gradCenterVec = (allScores[0] - 1) * allVecs[0] + (1 - sigmoid(-allScores[1:])).dot(allVecs[1:])
# gradOutsideVecs = np.zeros_like(outsideVectors)
# gradOutsideVecs[outsideWordIdx] -= (1 - sigmoid(allScores[0])) * centerWordVec
# for negSampleWordIdx, i in zip(negSampleWordIndices, range(1, len(indices))):
# gradOutsideVecs[negSampleWordIdx] += (
# 1 - sigmoid(-allScores[i])) * allVecs[i]
z = sigmoid(np.dot(outsideVectors[outsideWordIdx], centerWordVec))
loss -= np.log(z)
gradOutsideVecs[outsideWordIdx] += centerWordVec * (z - 1.0)
gradCenterVec += outsideVectors[outsideWordIdx] * (z - 1.0)
# Implementation with for loop
#for k in range(K):
# samp = indices[k+1]
# z = sigmoid(np.dot(-outsideVectors[samp], centerWordVec))
# loss -= np.log(z)
# gradOutsideVecs[samp] -= centerWordVec * (z - 1.0)
# gradCenterVec -= outsideVectors[samp] * (z - 1.0)
# Vectorized implementation
u_k = outsideVectors[negSampleWordIndices]
z = sigmoid(-np.dot(u_k,centerWordVec))
loss += np.sum(- np.log(z))
gradCenterVec += np.dot((z-1),u_k)*(-1)
gradOutsideVecs[negSampleWordIndices] += np.outer((z-1),centerWordVec)*(-1)
### END YOUR CODE
return loss, gradCenterVec, gradOutsideVecs
def skipgram(currentCenterWord, windowSize, outsideWords, word2Ind,
centerWordVectors, outsideVectors, dataset,
word2vecLossAndGradient=naiveSoftmaxLossAndGradient):
""" Skip-gram model in word2vec
Implement the skip-gram model in this function.
Arguments:
currentCenterWord -- a string of the current center word
windowSize -- integer, context window size
outsideWords -- list of no more than 2*windowSize strings, the outside words
word2Ind -- a dictionary that maps words to their indices in
the word vector list
centerWordVectors -- center word vectors (as rows) for all words in vocab
(V in pdf handout)
outsideVectors -- outside word vectors (as rows) for all words in vocab
(U in pdf handout)
word2vecLossAndGradient -- the loss and gradient function for
a prediction vector given the outsideWordIdx
word vectors, could be one of the two
loss functions you implemented above.
Return:
loss -- the loss function value for the skip-gram model
(J in the pdf handout)
gradCenterVecs -- the gradient with respect to the center word vectors
(dJ / dV in the pdf handout)
gradOutsideVectors -- the gradient with respect to the outside word vectors
(dJ / dU in the pdf handout)
"""
loss = 0.0
gradCenterVecs = np.zeros(centerWordVectors.shape)
gradOutsideVectors = np.zeros(outsideVectors.shape)
### YOUR CODE HERE
currentCenterWordIdx = word2Ind[currentCenterWord]
centerWordVec = centerWordVectors[currentCenterWordIdx]
for outsideWord in outsideWords:
outsideWordIdx = word2Ind[outsideWord]
(l, gradCenter, gradOutside) = word2vecLossAndGradient(
centerWordVec, outsideWordIdx, outsideVectors, dataset)
loss += l
gradCenterVecs[currentCenterWordIdx] += gradCenter
gradOutsideVectors += gradOutside
### END YOUR CODE
return loss, gradCenterVecs, gradOutsideVectors
#############################################
# Testing functions below. DO NOT MODIFY! #
#############################################
def word2vec_sgd_wrapper(word2vecModel, word2Ind, wordVectors, dataset,
windowSize,
word2vecLossAndGradient=naiveSoftmaxLossAndGradient):
batchsize = 50
loss = 0.0
grad = np.zeros(wordVectors.shape)
N = wordVectors.shape[0]
centerWordVectors = wordVectors[:int(N/2),:]
outsideVectors = wordVectors[int(N/2):,:]
for i in range(batchsize):
windowSize1 = random.randint(1, windowSize)
centerWord, context = dataset.getRandomContext(windowSize1)
c, gin, gout = word2vecModel(
centerWord, windowSize1, context, word2Ind, centerWordVectors,
outsideVectors, dataset, word2vecLossAndGradient
)
loss += c / batchsize
grad[:int(N/2), :] += gin / batchsize
grad[int(N/2):, :] += gout / batchsize
return loss, grad
def test_word2vec():
""" Test the two word2vec implementations, before running on Stanford Sentiment Treebank """
dataset = type('dummy', (), {})()
def dummySampleTokenIdx():
return random.randint(0, 4)
def getRandomContext(C):
tokens = ["a", "b", "c", "d", "e"]
return tokens[random.randint(0,4)], \
[tokens[random.randint(0,4)] for i in range(2*C)]
dataset.sampleTokenIdx = dummySampleTokenIdx
dataset.getRandomContext = getRandomContext
random.seed(31415)
np.random.seed(9265)
dummy_vectors = normalizeRows(np.random.randn(10,3))
dummy_tokens = dict([("a",0), ("b",1), ("c",2),("d",3),("e",4)])
print("==== Gradient check for skip-gram with naiveSoftmaxLossAndGradient ====")
gradcheck_naive(lambda vec: word2vec_sgd_wrapper(
skipgram, dummy_tokens, vec, dataset, 5, naiveSoftmaxLossAndGradient),
dummy_vectors, "naiveSoftmaxLossAndGradient Gradient")
print("==== Gradient check for skip-gram with negSamplingLossAndGradient ====")
gradcheck_naive(lambda vec: word2vec_sgd_wrapper(
skipgram, dummy_tokens, vec, dataset, 5, negSamplingLossAndGradient),
dummy_vectors, "negSamplingLossAndGradient Gradient")
print("\n=== Results ===")
print ("Skip-Gram with naiveSoftmaxLossAndGradient")
print ("Your Result:")
print("Loss: {}\nGradient wrt Center Vectors (dJ/dV):\n {}\nGradient wrt Outside Vectors (dJ/dU):\n {}\n".format(
*skipgram("c", 3, ["a", "b", "e", "d", "b", "c"],
dummy_tokens, dummy_vectors[:5,:], dummy_vectors[5:,:], dataset)
)
)
print ("Expected Result: Value should approximate these:")
print("""Loss: 11.16610900153398
Gradient wrt Center Vectors (dJ/dV):
[[ 0. 0. 0. ]
[ 0. 0. 0. ]
[-1.26947339 -1.36873189 2.45158957]
[ 0. 0. 0. ]
[ 0. 0. 0. ]]
Gradient wrt Outside Vectors (dJ/dU):
[[-0.41045956 0.18834851 1.43272264]
[ 0.38202831 -0.17530219 -1.33348241]
[ 0.07009355 -0.03216399 -0.24466386]
[ 0.09472154 -0.04346509 -0.33062865]
[-0.13638384 0.06258276 0.47605228]]
""")
print ("Skip-Gram with negSamplingLossAndGradient")
print ("Your Result:")
print("Loss: {}\nGradient wrt Center Vectors (dJ/dV):\n {}\n Gradient wrt Outside Vectors (dJ/dU):\n {}\n".format(
*skipgram("c", 1, ["a", "b"], dummy_tokens, dummy_vectors[:5,:],
dummy_vectors[5:,:], dataset, negSamplingLossAndGradient)
)
)
print ("Expected Result: Value should approximate these:")
print("""Loss: 16.15119285363322
Gradient wrt Center Vectors (dJ/dV):
[[ 0. 0. 0. ]
[ 0. 0. 0. ]
[-4.54650789 -1.85942252 0.76397441]
[ 0. 0. 0. ]
[ 0. 0. 0. ]]
Gradient wrt Outside Vectors (dJ/dU):
[[-0.69148188 0.31730185 2.41364029]
[-0.22716495 0.10423969 0.79292674]
[-0.45528438 0.20891737 1.58918512]
[-0.31602611 0.14501561 1.10309954]
[-0.80620296 0.36994417 2.81407799]]
""")
if __name__ == "__main__":
test_word2vec()
cs224n 作业
最新推荐文章于 2024-08-18 20:25:35 发布