Hadoop的实例测试

Hadoop--海量文件的分布式计算处理方案
Hadoop 是Google MapReduce的 一个Java实现。MapReduce是一种简化的分布式编程模式,让程序自动分布到一个由普通机器组成的超大集群上并发执行。就如同java程序员可以 不考虑内存泄露一样, MapReduce的run-time系统会解决输入数据的分布细节,跨越机器集群的程序执行调度,处理机器的失效,并且管理机器之间的通讯请求。这样的 模式允许程序员可以不需要有什么并发处理或者分布式系统的经验,就可以处理超大的分布式系统得资源。
:D :D :D 一、概论

作为Hadoop程序员,他要做的事情就是:
1、定义Mapper,处理输入的Key-Value对,输出中间结果。
2、定义Reducer,可选,对中间结果进行规约,输出最终结果。
3、定义InputFormat 和OutputFormat,可选,InputFormat将每行输入文件的内容转换为Java类供Mapper函数使用,不定义时默认为String。
4、定义main函数,在里面定义一个Job并运行它。


然后的事情就交给系统了。
1.基本概念:Hadoop的HDFS实现了google的GFS文件系统,NameNode作为文件系统的负责调度运行在master, DataNode运行在每个机器上。同时Hadoop实现了Google的MapReduce,JobTracker作为MapReduce的总调度运行 在master,TaskTracker则运行在每个机器上执行Task。

2.main()函数,创建JobConf,定义Mapper,Reducer,Input/OutputFormat 和输入输出文件目录,最后把Job提交給JobTracker,等待Job结束。

3.JobTracker,创建一个InputFormat的实例,调用它的getSplits()方法,把输入目录的文件拆分成FileSplist作为Mapper task 的输入,生成Mapper task加入Queue。

4.TaskTracker 向 JobTracker索求下一个Map/Reduce。

Mapper Task先从InputFormat创建RecordReader,循环读入FileSplits的内容生成Key与Value,传给Mapper函数,处理完后中间结果写成SequenceFile.
Reducer Task 从运行Mapper的TaskTracker的Jetty上使用http协议获取所需的中间内容(33%),Sort/Merge后(66%),执行Reducer函数,最后按照OutputFormat写入结果目录。

TaskTracker 每10秒向JobTracker报告一次运行情况,每完成一个Task10秒后,就会向JobTracker索求下一个Task。

Nutch项目的全部数据处理都构建在Hadoop之上,详见Scalable Computing with Hadoop。

:D :D :D 二、程序员编写的代码

我们做一个简单的分布式的Grep,简单对输入文件进行逐行的正则匹配,如果符合就将该行打印到输出文件。因为是简单的全部输出,所以我们只要写Mapper函数,不用写Reducer函数,也不用定义Input/Output Format。
package demo.hadoop

public class HadoopGrep {

public static class RegMapper extends MapReduceBase implements Mapper {

private Pattern pattern;

public void configure(JobConf job) {
pattern = Pattern.compile(job.get( " mapred.mapper.regex " ));
}

public void map(WritableComparable key, Writable value, OutputCollector output, Reporter reporter)
throws IOException {
String text = ((Text) value).toString();
Matcher matcher = pattern.matcher(text);
if (matcher.find()) {
output.collect(key, value);
}
}
}

private HadoopGrep () {
} // singleton

public static void main(String[] args) throws Exception {

JobConf grepJob = new JobConf(HadoopGrep. class );
grepJob.setJobName( " grep-search " );
grepJob.set( " mapred.mapper.regex " , args[ 2 ]);

grepJob.setInputPath( new Path(args[ 0 ]));
grepJob.setOutputPath( new Path(args[ 1 ]));
grepJob.setMapperClass(RegMapper. class );
grepJob.setReducerClass(IdentityReducer. class );

JobClient.runJob(grepJob);
}
}


RegMapper类的configure()函数接受由main函数传入的查找字符串,map() 函数进行正则匹配,key是行数,value是文件行的内容,符合的文件行放入中间结果。
main()函数定义由命令行参数传入的输入输出目录和匹配字符串,Mapper函数为RegMapper类,Reduce函数是什么都不做,直接把中间结果输出到最终结果的的IdentityReducer类,运行Job。


整个代码非常简单,丝毫没有分布式编程的任何细节。

:D :D :D 三.运行Hadoop程序

Hadoop这方面的文档写得不全面,综合参考GettingStartedWithHadoop 与Nutch Hadoop Tutorial 两篇后,再碰了很多钉子才终于完整的跑起来了,记录如下:

3.1 local运行模式

完全不进行任何分布式计算,不动用任何namenode,datanode的做法,适合一开始做调试代码。
:D :D 3.2 单机集群运行模式,伪分布式模式
将编译好的HadoopGrep与RegMapper.class 放入hadoop/build/classes/demo/hadoop/目录
现在将待查找的log文件放入hdfs,。
执行hadoop/bin/hadoop dfs 可以看到它所支持的文件操作指令。
执行hadoop/bin/hadoop dfs put log文件所在目录 in ,则log文件目录已放入hdfs的/user/user-name/in 目录中
现在来执行Grep操作hadoop/bin/hadoop demo.hadoop.HadoopGrep in out
查看hadoop/logs/里的运行日志,重新执行前。运行hadoop/bin/hadoop dfs rmr out 删除out目录。
运行hadoop/bin/stop-all.sh 结束
3.3 集群运行模式


:D :D :D 四、效率

经测试,Hadoop并不是万用灵丹,很取决于文件的大小和数量,处理的复杂度以及群集机器的数量,相连的带宽,当以上四者并不大时,hadoop优势并不明显。
比如,不用hadoop用java写的简单grep函数处理100M的log文件只要4秒,用了hadoop local的方式运行是14秒,用了hadoop单机集群的方式是30秒,用双机集群10M网口的话更慢,慢到不好意思说出来的地步。

另外一个程序例子:
package org;  

import java.io.IOException;
import java.util.StringTokenizer;

import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;

public class MyMap extends Mapper<Object, Text, Text, IntWritable> {
private final static IntWritable one = new IntWritable(1);

private Text word;

public void map(Object key, Text value, Context context)
throws IOException, InterruptedException {

String line = value.toString();
StringTokenizer tokenizer = new StringTokenizer(line);
while (tokenizer.hasMoreTokens()) {
word = new Text();
word.set(tokenizer.nextToken());
context.write(word, one);
}
}
}

    package org;  

import java.io.IOException;

import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;

public class MyReduce extends
Reducer<Text, IntWritable, Text, IntWritable> {
public void reduce(Text key, Iterable<IntWritable> values, Context context)
throws IOException, InterruptedException {
int sum = 0;
for (IntWritable val : values) {
sum += val.get();
}
context.write(key, new IntWritable(sum));
}
}


package org;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;

public class MyDriver {


public static void main(String[] args) throws Exception,InterruptedException {
Configuration conf=new Configuration();

Job job=new Job(conf,"Hello Hadoop");

job.setJarByClass(MyDriver.class);

job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(IntWritable.class);

job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);

job.setMapperClass(MyMap.class);
job.setCombinerClass(MyReduce.class);
job.setReducerClass(MyReduce.class);

job.setInputFormatClass(TextInputFormat.class);
job.setOutputFormatClass(TextOutputFormat.class);

FileInputFormat.setInputPaths(job, new Path(args[0]));

FileOutputFormat.setOutputPath(job, new Path(args[1]));
// JobClient.runJob(conf);
job.waitForCompletion(true);
}

}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值