首先要声明的就是,千万级数据对于MySQL来说就是不太合理的一个存在。
优化MySQL千万级数据策略还是比较多的。
-
分表分库
-
创建中间表,汇总表
-
修改为多个子查询
这里讨论的情况是在MySQL一张表的数据达到千万级别。表设计很烂,业务统计规则又不允许把sql拆成多个子查询。
在这样的情况下,开发者可以尝试通过优化SQL来达到查询的目的。
当MySQL一张表的数据达到千万级别,会出现一些特殊的情况。这里主要是讨论在比较极端的情况下SQL的优化策略。
先来个千万级数据
通过存储过程传递函数制造1000万条数据。
表结构如下:
CREATE TABLE `orders` (
`order_id` int NOT NULL AUTO_INCREMENT,
`user_id` int DEFAULT NULL,
`order_date` date NOT NULL,
`total_amount` decimal(10,2) NOT NULL,
PRIMARY KEY (`order_id`),
KEY `idx_user_id` (`user_id`) USING BTREE,
KEY `idx_user_amount` (`user_id`,`total_amount`) USING BTREE
) ENGINE=InnoDB AUTO_INCREMENT=1 DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_general_ci;
CREATE TABLE `users` (
`user_id` int NOT NULL AUTO_INCREMENT,
`username` varchar(50) COLLATE utf8mb4_general_ci NOT NULL,
`email` varchar(100) COLLATE utf8mb4_general_ci NOT NULL,
`created_at` timestamp NULL DEFAULT CURRENT_TIMESTAMP,
PRIMARY KEY (`user_id`),
KEY `idx_user_id` (`user_id`) USING BTREE
) ENGINE=InnoDB AUTO_INCREMENT=1 DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_general_ci;
造数据的存储过程如下。
用户数据:
-- 产生用户存储过程,1000个
CREATE DEFINER=`root`@`localhost` PROCEDURE `create_users`()
BEGIN
DECLARE i INT DEFAULT 0;
DECLARE total_users INT DEFAULT 1000; -- 调整用户数量
DECLARE rnd_username VARCHAR(50);
DECLARE rnd_email VARCHAR(100);
WHILE i < total_users DO
-- 生成随机用户名和邮箱
SET rnd_username = CONCAT('User', FLOOR(1 + RAND() * 10000000)); -- 假设用户名唯一
SET rnd_email = CONCAT(rnd_username, '@example.com'); -- 假设邮箱唯一
-- 将数据插入用户表
INSERT INTO users (username, email) VALUES (rnd_username, rnd_email);
SET i = i + 1;
END WHILE;
END
订单数据生成存储过程如下:
CREATE DEFINER=`root`@`localhost` PROCEDURE `generate_orders`()
BEGIN
DECLARE i INT DEFAULT 0;
DECLARE total_users INT DEFAULT 1000; -- 用户数量
DECLARE total_orders_per_user INT DEFAULT 1000; -- 每个用户的订单数量
DECLARE rnd_user_id INT;
DECLARE rnd_order_date DATE;
DECLARE rnd_total_amount DECIMAL(10, 2);
DECLARE j INT DEFAULT 0;
WHILE i < total_users DO
-- 获取用户ID
SELECT user_id INTO rnd_user_id FROM users LIMIT i, 1;
WHILE j < total_orders_per_user DO
-- 生成订单日期和总金额
SET rnd_order_date = DATE_ADD('2020-01-01', INTERVAL FLOOR(RAND() * 1096) DAY); -- 202