PyTorch 常用代码整理

从网上看到别人整理的PyTorch常用代码1, 觉得很有用,所以就整理到自己的博客上,方便下次遗忘使用。
基于PyTorch1.0版本,需要用到以下包

import collections
import os
import shutil
import tqdm

import numpy as np
import PIL.Image
import torch
import torchvision

1. 基础配置

检查PyTorch版本

torch.__version__               # PyTorch version
torch.version.cuda              # Corresponding CUDA version
torch.backends.cudnn.version()  # Corresponding cuDNN version
torch.cuda.get_device_name(0)   # GPU type

更新PyTorch

PyTorch将安装在anaconda3/lib/python3.7/site-packages/torch/目录下(python2.x即将被淘汰,建议使用python3.x)

conda update pytorch torchvision -c pytorch

固定随机种子

torch.manual_seed(0)
torch.cuda.manual_seed_all(0)

将程序运行在指定GPU显卡上

在命令行下指定环境变量

CUDA_VISIBLE_DEVICES=0,1 python train.py  # notice has 'S' of 'DEVICES'

或者在代码中指定

os.environ['CUDA_VISIBLE_DEVICES'] = '0,1'

判断是否有CUDA支持

torch.cuda.is_available()

设置为cuDNN benchmark模式
Benchmark模式会提升计算速度,但计算中有随机性,每次网络前馈结果有差异。

torch.backends.cudnn.benchmark = True

如果想避免结果波动,添加设置

torch.backends.cudnn.deterministic = True

清除GPU存储

有时Control-C终止程序会使得GPU存储未释放,需要手动清空。在PyTorch内部可以使用

torch.cuda.empty_cache()

或者在命令行先使用ps查找程序PID,再使用kill结束进程

ps aux | grep python
kill -9 [pid]

或者直接重置没有清空的GPU(本人一般不用这种方式)

nvidia-smi --gpu-reset -i [gpu_id]

2. 张量处理

张量基本信息

tensor.type()    # Data type
tensor.size()    # Shape of the tensor. It is a subclass of Python tuple
tensor.dim()     # Number of dimensions.

数据类型转换

# Set default tensor type. Float in PyTorch is much faster than double. 
torch.set_default_tensor_type(torch.FloatTensor)

# Type convertions.
tensor = tensor.cuda()
tensor = tensor.cpu()
tensor = tensor.float()
tensor = tensor.long()

torch.Tensor与np.ndarray转换

# torch.Tensor -> np.ndarray.
ndarray = tensor.cpu().numpy()

# np.ndarray -> torch.Tensor
tensor = torch.from_numpy(ndarray).float()
tensor = torch.from_numpy(ndarray.copy()).float() # If ndarray has negative stride

torch.Tensor与PIL.Image转换

PyTorch中的张量默认采用N*D*H*W的顺序,并且数值范围在[0,1],需要进行转置和规范化。

# torch.Tensor -> PIL.Image.
image = PIL.Image.fromarray(torch.clamp(tensor*255, min=0, max=255).byte().permute(1, 2, 0).cpu().numpy())
image = torchvision.transforms.functional.to_pil_image(tensor) # Equivalently way

# PIL.Image -> torch.Tensor
tensor = torch.from_numpy(np.asarray(PIL.Image.open(path))).permute(2, 0, 1).float() / 255
tensor = torchvision.transforms.functional.to_tensor(PIL.Image.open(path))  # Equivalently way

np.ndarray与PIL.Image转换

# np.ndarray -> PIL.Image.
image = PIL.Image.fromarray(ndarray.astype(np.uint8))

# PIL.Image -> np.ndarray.
ndarray = np.asarray(PIL.Image.open(path))

从只包含一个元素的张量中提取值

这个在训练时统计loss的变换过程中特别有用。否则这将累积计算图,使GPU存储占用量越来越大。

value = tensor.item()

张量形变

张量形变常常用于将卷积层特征输入全连接层的情形。相比torch.view,torch.reshape可以自动处理输入张量不连续的情况

tensor = tensor.reshape(tensor, shape)

打乱顺序

tensor = tensor[torch.randperm(tensor.size(0))] # Shuffle the first dimension

水平翻转

PyTorch不支持tensor[::-1]这样的负步长操作,水平翻转可以用张量索引实现。

# Assume tensor has shape N*D*H*W
tensor = tensor[:, :, :, torch.arange(tensor.size(3) -1, -1, -1).long()]

复制张量

有三种复制的方式,对应不同的需求。

# Operation            | New/Shared memory | Still in computation graph |
tensor.clone()          # | New            | Yes                     | 
tensor.detach()         # | Shared         | No                      |
tensor.detch.clone()()  # |  New           | No                      |

拼接张量

注意torch.cat和torch.stack的区别在于torch.cat沿着给定的维度拼接,而torch.stack会新增一维。例如当参数是3个10x5的张量,torch.cat的结果是30x5的张量,而torch.stack的结果是3x10x5的张量。

tensor = torch.cat(list_of_tensors, dim=0)
tensor = torch.stack(list_of_tensors, dim=0)

将整数标记转换成(one-hot)编码

PyTorch中默认从0开始
错误!!

得到非零元素

torch.nonzero(tensor)              # Index of non-zero elements
torch.nonzero(tensor == 0)         # Index of zeor elements
torch.nonzero(tensor).size(0)      # Number of non-zero elements
torch.nonzeor(tensor == 0).size(0) # Number of zeor elements

判断两个张量是否相等

torch.allclose(tensor1, tensor2)  # float tensor
torch.equal(tensor1, tensor2)     # int tensor

张量扩展

# Expand tensor of shape 64x512 to shape 64x512x7x7.
torch.reshape(tensor, (64, 512, 1, 1)).expand(64, 512, 7, 7)

矩阵乘法

# Matrix multiplication: (m*n) * (n*p) -> (m*p).
result = torch.mm(tensor1, tensor2)

# Batch matrix multiplicaton: (b*m*n) * (b*n*p) -> (b*m*p).
result = torch.bmm(tensor1, tensor2)

# Element-wise multiplication.
result = tensor1 * tensor2

计算两组数据之间的欧氏距离

# X1 is of shape m*d, X2 is of shape n*d.
dist = torch.sqrt(torch.sum((X1[:,None,:] - X2)** 2, dim=2))

3.模型定义

卷积层

常见卷积层配置

conv3x3 = torch.nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1, bias=True)
conv1x1 = torch.nn.Conv2d(in_channels, out_channels, kernel_size=1 stride=1, padding=0, bias=True)

如果卷积层配置比较复杂,不方便计算输出大小时,可以利用如下可视化工具辅助
https://ezyang.github.io/convolution-visualizer/index.html

GAP (Global Average Pooling)

gap = torch.nn.AdaptiveAvgPool2d(output_size=1)

双线性汇合(bilinear pooling)2

x = torch.reshape(N, D, H * W)                       # Assume x has shape N*D*H*W
x = torch.bmm(x, torch.transpose(x, 1, 2)) / (H * W) # Bilinear pooling    
assert x.size() == (N, D, D)   
x = torch.reshape(x, (N, D * D))
x = torch.sign(x) * torch.sqrt(torch.abs(x) + 1e-5)  # Signed-sqrt normalization
x = torch.nn.functional.normalize(x)                 # L2 normalization

多卡同步BN(Batch Normalization)

当使用torch.nn.DataParallel将代码运行在多张GPU显卡时,PyTorch的BN层默认在各张卡上数据独立地计算均值和标准差,同步BN使所有卡上的数据一起计算BN层的均值和标准差,缓解当批量大小(batch size)比较小时对均值和标准差估计不准的情况,是目标检测等任务中一个有效提升性能的技巧。
https://github.com/vacancy/Synchronized-BatchNorm-PyTorch
现在PyTorch官方已经支持同步BN操作

sync_bn = torch.nn.SyncBatchNorm(num_features, eps=1e-05, momentum=0.1, affine=True, 
                                 track_running=True)

将已有网络的所有BN层改为同步BN层

def convertBNtoSyncBN(module, process_group=None):
    '''Recursively replace all BN layers to SyncBN layer.

    Args:
        module[torch.nn.Module]. Network
    '''
    if isinstance(module, torch.nn.modules.batchnorm._BatchNorm):
        sync_bn = torch.nn.SyncBatchNorm(module.num_features, module.eps, module.momentum, 
                                         module.affine, module.track_running_stats, process_group)
        sync_bn.running_mean = module.running_mean
        sync_bn.running_var = module.running_var
        if module.affine:
            sync_bn.weight = module.weight.clone().detach()
            sync_bn.bias = module.bias.clone().detach()
        return sync_bn
    else:
        for name, child_module in module.named_children():
            setattr(module, name) = convert_syncbn_model(child_module, process_group=process_group))
        return module

类似BN滑动平均

如果要实现类似BN滑动平均的操作,在forward函数中要使用原地(inplace)操作给滑动平均赋值。

class BN(torch.nn.Module):
    def __init__(self):
        ...
        self.register_buffer('running_mean', torch.zeros(num_feautures))
    def foward(self, x):
       ...
       self.running_mean += momentum * (current - self.running_mean)

计算模型整体参数量

num_parameters = sum(torch.numel(parameter) for parameter in model.parameters())

类似Keras的model.summary()输出模型信息
https://github.com/sksq96/pytorch-summary

模型权值初始化

注意model.modules()和model.children()的区别:model.modules()会迭代遍历模型的所有子层,而model.children()只会遍历模型下的一层。

# Common practise for initialization
for layer in model.modules():
    if isinstance(layer, torch.nn.Conv2d):
        torch.nn.init.kaiming_normal_(layer.weight, mode='fan_out', nonlinearity='relu')
        if layer.bias is not None:
            torch.nn.init.constant_(layer.bias, val=0.0)
        elif isinstance(layer, torch.nn.BatchNorm2d):
            torch.nn.init.constant_(layer.weight, val=1.0)
            torch.nn.init.constant_(layer.bias, val=0.0)
        elif isinstance(layer, torch.nn.Linear):
            torch.nn.init.xavier_normal_(layer.weight)
            if layer.bias is not None:
                torch.nn.init.constant_(layer.bias, val=0.0)
# Initialization with given tensor.
layer.weight = torch.nn.Parameter(tensor)

部分层使用预训练模型

注意如果保存的模型是torch.nn.DataParallel,则当前的模型也需要torch.nn.DataParallel。torch.nn.DataParallel(model).module == model

model.load_state_dict(torch.load('model.pth'), strict=False)

将在GPU保存的模型加载到CPU

model.load_state_dict(torch.load('model.pth', map_location='cpu'))

4.数据准备、特征提取与微调

图像分块打散(image shuffle)/区域混淆机制(region confusion mechanism, RCM)3

# X is torch.Tensor of size N*D*H*W.
# Shuffle rows
Q = (torch.unsqueeze(torch.arange(num_blocks), dim=1) * torch.ones(1, num_blocks).long()
     + torch.randint(low=-neighbour, high=neighbour, size=(num_blocks, num_blocks)))
Q = torch.argsort(Q, dim=0)
assert Q.size() == (num_blocks, num_blocks)

X = [torch.chunk(row, chunks=num_blocks, dim=2)
     for row in torch.chunk(X, chunks=num_blocks, dim=1)]
X = [[X[Q[i, j].item()][j] for j in range(num_blocks)]
     for i in range(num_blocks)]

# Shulle columns.
Q = (torch.ones(num_blocks, 1).long() * torch.unsqueeze(torch.arange(num_blocks), dim=0)
     + torch.randint(low=-neighbour, high=neighbour, size=(num_blocks, num_blocks)))
Q = torch.argsort(Q, dim=1)
assert Q.size() == (num_blocks, num_blocks)
X = [[X[i][Q[i, j].item()] for j in range(num_blocks)]
     for i in range(num_blocks)]

Y = torch.cat([torch.cat(row, dim=2) for row in X], dim=1)

得到视频数据基本信息

import cv2
video = cv2.VideoCapture(mp4_path)
height = int(video.get(cv2.CAP_PROP_FRAME_HEIGHT))
width = int(video.get(cv2.CAP_PROP_FRAME_HEIGHT))
num_frames = int(vidoe.get(cv2.CAP_PROP_FRAME_COUNT))
fps = int(vidoe.get(cv2.CAP_PROP_FPS))
video.release()

TSN每段(segment)采样一帧视频4

K = self._num_segments
if is_train:
    if num_frames > K:
        # Random index for each segment.
        frame_indices = torch.randint(
            high=num_frames // K, size=(K,), dtype=torch.long)
        frame_indices += num_frames // K * torch.arange(K)
    else:
        frame_indices = torch.randint(
            high=num_frames, size=(K - num_frames,), dtype=torch.long)
        frame_indices = torch.sort(torch.cat((
            torch.arange(num_frames), frame_indices)))[0]
else:
    if num_frames > K:
        # Middle index for each segment.
        frame_indices = num_frames / K // 2
        frame_indices += num_frames // K * torch.arange(K)
    else:
        frame_indices = torch.sort(torch.cat((                              
            torch.arange(num_frames), torch.arange(K - num_frames))))[0]
assert frame_indices.size() == (K,)
return [frame_indices[i] for i in range(K)]

提取ImageNet预训练模型某曾的卷积特征

# VGG-16 relu5-3 feature.
model = torchvision.models.vgg16(pretrained=True).features[:-1]
# VGG-16 pool5 feature
model = torchvision.models.vgg16(pretrained=True).features
# VGG-16 fc7 feature.
model = torchvision.models.vgg16(pretrained=True)
model.classifier = torch.nn.Sequential(*list(model.classifier.children())[:-3])
# ResNet GAP feature.
model = torchvision.models.resnet18(pretrained=True)
model = torch.nn.Sequential(collections.OrderedDict(
    list(model.named_children())[:-1]))

with torch.no_grad():
    model.eval()
    conv_representation = model(image)

提取ImageNet预训练模型多层的卷积特征

class FeatureExtractor(torch.nn.Module):
    """Helper class to extract several convolution features from the given
    pre-trained model.

    Attributes:
        _model, torch.nn.Module.
        _layers_to_extract, list<str> or set<str>

    Example:
        >>> model = torchvision.models.resnet152(pretrained=True)
        >>> model = torch.nn.Sequential(collections.OrderedDict(
                list(model.named_children())[:-1]))
        >>> conv_representation = FeatureExtractor(
                pretrained_model=model,
                layers_to_extract={'layer1', 'layer2', 'layer3', 'layer4'})(image)
    """
    def __init__(self, pretrained_model, layers_to_extract):
        torch.nn.Module.__init__(self)
        self._model = pretrained_model
        self._model.eval()
        self._layers_to_extract = set(layers_to_extract)
    
    def forward(self, x):
        with torch.no_grad():
            conv_representation = []
            for name, layer in self._model.named_children():
                x = layer(x)
                if name in self._layers_to_extract:
                    conv_representation.append(x)
            return conv_representation

其他预训练模型

https://github.com/Cadene/pretrained-models.pytorch

微调全连接层

model = torchvision.models.resnet18(pretrained=True)
for param in model.parameters():
    param.requires_grad = False
model.fc = nn.Linear(512, 100) # Replace the last fc layer
optimizer = torch.optim.SGD(model.fc.parameters(), lr=1e-2, momentum=0.9, weight_decay=1e-4)

以较大学习率微调全连接层,较小学习率微调卷积层

model = torchvision.models.resnet18(pretrained=True)
finetuned_parameters = list(map(id, model.fc.parameters()))
conv_parameters = (p for p in model.parameters() if id(p) not in finetuned_parameters)
parameters = [{'params': conv_parameters, 'lr': 1e-3}, 
              {'params': model.fc.parameters()}]
optimizer = torch.optim.SGD(parameters, lr=1e-2, momentum=0.9, weight_decay=1e-4)

5.模型训练

常用训练和验证数据预处理

其中ToTensor操作会将PIL.Image或者形状为HxWxD,数值范围为[0, 255]的np.ndarray转换成形状为DxHxW,数值为[0, 1]之间的torch.Tensor

train_transform = torchvision.transforms.Compose([
    torchvision.transforms.RandomResizedCrop(size=224, scale=(0.08, 1.0)),
    torchvision.transforms.RandomHorizontalFlip(),
    torchvision.transforms.ToTensor(),
    torchvision.transforms.Normalize(mean=(0.485, 0.456, 0.406),std=(0.229, 0.224, 0.225)),
    ])
val_transforms = torchvision.transforms.Compose([
    torchvision.transforms.Resize(256),
    torchvision.transforms.CenterCrop(224),
    torchvision.transforms.ToTensor(),
    torchvision.transforms.Normalize(mean=(0.485, 0.456, 0.406),std=(0.229, 0.224, 0.225)),
    ])

训练基本代码框架

for t in epoch(80):
    for images, labels in tqdm.tqdm(train_loader, desc='Epoch %3d' % (t + 1)):
        images, labels = images.cuda(), labels.cuda
        scores = model(images)
        loss = loss_function(scores, labels)
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

标记平滑(label smoothing)5

for images, labels in train_loader:
    images, labels = images.cuda(), labels.cuda()
    N = labels.size(0)
    # C is the number of classes.
    smoothed_labels = torch.full(size=(N, C), fill_value=0.1 / (C -1)).cuda()
    smoothed_labels.scatter_(dim=1, index=torch.unsqueeze(labels, dim=1), value=0.9)

    score = model(images)
    log_prob = torch.nn.functional.log_softmax(score, dim=1)
    loss = -torch.sum(log_prob * smoothed_labels) / N
    optimizer.zero_grad()
    loss.backward()
    optimizer.step()

Mixup6

beta_distribution = torch.distributions.beta.Beta(alpha, alpha)
for images, labels in train_loader:
    images, labels = images.cuda(), labels.cuda()
    
    # Mixup images.
    lambda_ = beta_distribution.sample([]).item()
    index = torch.randperm(images.size(0)).cuda()
    mixed_images = lambda_ * images + (1 - lambda_) * images[index, :]

    # Mixup loss.
    scores = model(mixed_images)
    loss = (lambda_ * loss_function(scores, labels[index]))

    optimizer.zero_grad()
    loss.backward()
    optimizer.step()

L1正则化

l1_regularization = torch.nn.L1Loss(reduction='sum')
loss = ... # Standard cross-entropy loss
for param in model.parameters():
    loss += lambda_ * torch.sum(torch.abs(param))
loss.backward()

不对偏置项进行L2正则化/权值衰减(weight decay)

bias_list = (param for name, param in model.named_parameters() if name[-4:]  == 'bias')
others_list = (param for name, param in model.name_parameters() if name[-4:] != 'bias')
parameters = [{'parameters': bias_list, 'weight_decay': 0}, {'parameters': others_list}]
optimizer = torch.optim.SGD(parameters, lr=1e-2, momentum=0.9, weight_decay=1e-4)

梯度裁剪(gradient clipping)

torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=20)

计算Softmax输出的准确率

score = model(images)
prediction = torch.argmax(score, dim=1)
num_correct = torch.sum(prediction == labels).item()
accurucay = num_correct / labels.size(0)

可视化前馈计算图

https://github.com/szagoruyko/pytorchviz

可视化学习曲线

Facebook自己开发的Visdom和Tensorboard两个选择
https://github.com/facebookresearch/visdom
https://pytorch.org/docs/stable/tensorboard.html

# Example using Visdom.
vis = visdom.Visdom(env='Learning curve', use_incoming_socket=False)
assert self._visdom.check_connection()
self._visdom.close()
options = collections.namedtuple('Options', ['loss', 'acc', 'lr'])(
    loss={'xlabel': 'Epoch', 'ylabel': 'Loss', 'showlegend': True},
    acc={'xlabel': 'Epoch', 'ylabel': 'Accuracy', 'showlegend': True},
    lr={'xlabel': 'Epoch', 'ylabel': 'Learning rate', 'showlegend': True})

for t in epoch(80):
    tran(...)
    val(...)
    vis.line(X=torch.Tensor([t + 1]), Y=torch.Tensor([train_loss]),
             name='train', win='Loss', update='append', opts=options.loss)
    vis.line(X=torch.Tensor([t + 1]), Y=torch.Tensor([val_loss]),
             name='val', win='Loss', update='append', opts=options.loss)
    vis.line(X=torch.Tensor([t + 1]), Y=torch.Tensor([train_acc]),
             name='train', win='Accuracy', update='append', opts=options.acc)
    vis.line(X=torch.Tensor([t + 1]), Y=torch.Tensor([val_acc]),
             name='val', win='Accuracy', update='append', opts=options.acc)
    vis.line(X=torch.Tensor([t + 1]), Y=torch.Tensor([lr]),
             win='Learning rate', update='append', opts=options.lr)

得到当前学习率

# If there is one global learning rate (which is the common case).
lr = next(iter(optimizer.param_groups))['lr']

# If there are multiple learning rates for different layers.
all_lr = []
for param_group in optimizer.param_groups:
    all_lr.append(param_group['lr'])

学习率衰减

# Reduce learning rate when validation accuarcy plateau.
scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode='max', patience=5, verbose=True)
for t in range(0, 80):
    train(...); val(...)
    scheduler.step(val_acc)

# Cosine annealing learning rate.
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=80)
# Reduce learning rate by 10 at given epochs.
scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=[50, 70], gamma=0.1)
for t in range(0, 80):
    scheduler.step()    
    train(...); val(...)

# Learning rate warmup by 10 epochs.
scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda=lambda t: t / 10)
for t in range(0, 10):
    scheduler.step()
    train(...); val(...)

保存与加载断点

为了能恢复训练,我们需要同时保存模型和优化器的状态,以及当前的训练轮数

# Save checkpoint.
is_best = current_acc > best_acc
best_acc = max(max_acc, current_acc)
checkpoint = {
    'best_acc': best_acc,
    'epoch': t+1,
    'model': model.state_dict(),
    'optimizer': optimizer.state_dict(),
}
model_path = os.path.join('model', 'checkpoint.path.tar')
torch.save(checkpoint, model_path)
if is_best:
    shutil.cop('checkpoint.pth.tar', model_path)
    
# Load checkpoint.
if resume:
    model_path = os.path.join('model', 'checkpoint.pth.tar')
    assert os.path.isfile(model_path)
    checkpoint = torch.load(model_path)
    best_acc = checkpoint['best_acc']
    start_epoch = checkpoint['epoch']
    model.load_state_dict(checkpoint['model'])
    optimizer.load_state_dict(checkpoint['optimizer'])
    print('Load checkpoint at epoch %d.' % start_epoch)

计算准确率,查准率(precision),查全率(recall)

# data['label'] and data['prediction'] are groundtruth label and prediction
# for each image, respectively.
accuracy = np.mean(data['label'] == data['prediction']) * 100

# Compute recision and recall for each class.
for c in range(len(num_classes)):
    tp = np.dot((data['label'] == c).astype(int),
                (data['prediction'] == c).astype(int))
    tp_fp = np.sum(data['prediction'] == c)
    tp_fn = np.sum(data['label'] == c)
    precision = tp / tp_fp * 100
    recall = tp / tp_fn * 100

6.模型测试

计算每个类别的查准率(precision),查全率(recall),F1和总体指标

import sklearn.metrics

all_label = []
all_prediction = []
for images, labels in tqdm.tqdm(data_loader):
     # Data.
     images, labels = images.cuda(), labels.cuda()
     
     # Forward pass.
     score = model(images)
     
     # Save label and predictions.
     prediction = torch.argmax(score, dim=1)
     all_label.append(labels.cpu().numpy())
     all_prediction.append(prediction.cpu().numpy())

# Compute RP and confusion matrix.
all_label = np.concatenate(all_label)
assert len(all_label.shape) == 1
all_prediction = np.concatenate(all_prediction)
assert all_label.shape == all_prediction.shape
micro_p, micro_r, micro_f1, _ = sklearn.metrics.precision_recall_fscore_support(
     all_label, all_prediction, average='micro', labels=range(num_classes))
class_p, class_r, class_f1, class_occurence = sklearn.metrics.precision_recall_fscore_support(
     all_label, all_prediction, average=None, labels=range(num_classes))
# Ci,j = #{y=i and hat_y=j}
confusion_mat = sklearn.metrics.confusion_matrix(
     all_label, all_prediction, labels=range(num_classes))
assert confusion_mat.shape == (num_classes, num_classes)

将各类结果写入电子表格

import csv

# Write results onto disk.
with open(os.path.join(path, filename), 'wt', encoding='utf-8') as f:
     f = csv.writer(f)
     f.writerow(['Class', 'Label', '# occurence', 'Precision', 'Recall', 'F1',
                 'Confused class 1', 'Confused class 2', 'Confused class 3',
                 'Confused 4', 'Confused class 5'])
     for c in range(num_classes):
         index = np.argsort(confusion_mat[:, c])[::-1][:5]
         f.writerow([
             label2class[c], c, class_occurence[c], '%4.3f' % class_p[c],
                 '%4.3f' % class_r[c], '%4.3f' % class_f1[c],
                 '%s:%d' % (label2class[index[0]], confusion_mat[index[0], c]),
                 '%s:%d' % (label2class[index[1]], confusion_mat[index[1], c]),
                 '%s:%d' % (label2class[index[2]], confusion_mat[index[2], c]),
                 '%s:%d' % (label2class[index[3]], confusion_mat[index[3], c]),
                 '%s:%d' % (label2class[index[4]], confusion_mat[index[4], c])])
         f.writerow(['All', '', np.sum(class_occurence), micro_p, micro_r, micro_f1, 
                     '', '', '', '', ''])

7.PyTorch其他注意事项

模型定义

  • 建议有参数的层和池化层(pool)使用torch.nn模块定义,激活函数直接使用torch.nn.functional. torch.nn模块和torch.nn.functional的区别在于,torch.nn模块在计算时底层调用了torch.nn.functional, 但torch.nn模块包含该层参数,还可以应对训练和测试两种网络状态.使用torch.nn.functional时要注意网络状态,如:
def forward(self, x):
    ...
    x = torch.nn.functional.dropout(x, p=0.5, training=self.training)
  • model(x)前用model.train() 和model.eval() 切换网络状态
  • 不需要计算梯度的代码块用with.torch.no_grad()包含起来.model.eval()和torch.no_grad()的区别在于,model.eval()是将网络切换为测试状态,例如BN和dropout在训练和测试阶段使用不同的计算方法.torch.no_grad()是关闭Pytorch张量的自动求导机制,以减少存储使用和加速计算,得到的结果无法进行loss.backward().
  • torch.nn.CrossEntropyLoss的输入不需要经过Softmax. torch.nn.CrossEntropyLoss等价于torch.nn.functional.log_softmax+torch.nn.NLLLoss
  • loss.backward()前用optimizer.zero_grad()清除累计梯度.optimizer.zero_grad()和model.zero_grad()效果一样.

PyTorch性能与调试

  • torch.utils.data.DataLoader中尽量设置pin_memory=True, 对特别小的数据集如MNIST设置pin_memory=False反而快一些.numpy_workers的设置需要在实验中找到最快的取值.
  • 用del及时删除不可用的中间变量,节约GPU存储.
  • 使用inplace操作可节约GPU存储,如
    x = torch.nn.functional.relu(x, inplace=True)

此外,还可以通过torch.utils.checkpoint前向传播时只保留一部分中间结果来节约GPU存储使用,在反向传播时需要的内容从最近中间结果中计算得到.

  • 减少CPU和GPU之间的数据传输.假如如果你想知道一个epoch中每个mini-batch的loss和准确率,现将它们累计在GPU中等一个epoch结束之后一起回传回CPU会比每个mini-batch都进行一次GPU到CPU的传输更快.
  • 使用半精度浮点half()会有一定的速度提升,具体效率依赖GPU型号.需要小心数值精确度过低带来的不稳定性问题.
  • 时常使用assert tensor.size() == (N, D, H, W)作为调试手段,确保张量维度和你设想中一致.
  • 除了标记y外,尽量少使用一维张量,使用n*1的二维张量代替,可以避免一些意想不到的一维张量计算结果.
  • 统计代码各部分耗时情况
with torch.autograd.profiler.profile(enabled=True, use_cuda=False) as profile:
   ...
print(profile)

或者在命令行输入

python -m torch.utils.bottleneck main.py

  1. https://zhuanlan.zhihu.com/p/59205847 ↩︎

  2. T.-Y. Lin, A. RoyChowdhury, and S. Maji. Bilinear CNN models for fine-grained visual recognition. In ICCV, 2015. ↩︎

  3. Y. Chen, Y. Bai, W. Zhang, and T. Mei. Destruction and construction learning for fine-grained image recognition. In CVPR, 2019. ↩︎

  4. L. Wang, Y. Xiong, Z. Wang, Y. Qiao, D. Lin, X. Tang, and L. V. Gool. Temporal segment networks: Towards good practices for deep action recognition. In ECCV, 2016. ↩︎

  5. C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna: Rethinking the Inception architecture for computer vision. In CVPR, 2016. ↩︎

  6. H. Zhang, M. Cissé, Y. N. Dauphin, and D. Lopez-Paz. mixup: Beyond empirical risk minimization. In ICLR, 2018. ↩︎

  • 2
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值