大数因数分解之等面积形变 法:
取任意正整数N,那么一定有N=1*N,以及N=1+1+1+1……+1(N个1相加),以及N=1*1+1*1+1*1……+1*1(N个1*1相加)。
设矩形ABCD,长为N,宽为1.则该矩形面积S=1*N=N。
在直角坐标中,以横坐标为长、纵坐标为宽,画出矩形ABCD,其中A(0,0),B(N,0),C(N,1),D(0,1)。将矩形ABCD划分成N个1*1的正方形。
若要证明X(X为正整数)是否为N的因数,只需将组成矩形的正方形移动,使矩形ABCD从1排形式,变成X排形式。
移动完成后,如果每排正方形的数量都相等,那么,X就是N的因数。另一个因数就是每排正方形的个数。
如果每排正方形的数量不是都相等,那么,X就不是N 的因数。
(结合筛选法、平方根法则,求解将更便捷。)