人工智能赋能数字水务白皮书.pdf
人工智能赋能数字水务白皮书.pdf
2025年AI+Agent+医疗行业研究报告.pdf
2025年AI+Agent+医疗行业研究报告.pdf
内容+人工智能驱动商业增长.pdf
内容+人工智能驱动商业增长.pdf
2025年人工智能就绪度白皮书-205.5.pdf
2025年人工智能就绪度白皮书-205.5.pdf
2025年台湾AI行销趋势报告(繁体版).pdf
2025年台湾AI行销趋势报告(繁体版).pdf
AI+驱动消费决策|营销变革白皮书.pdf
AI+驱动消费决策|营销变革白皮书.pdf
2025年AI驱动组织人才发展白皮书.pdf
2025年AI驱动组织人才发展白皮书.pdf
大模型时代下的安全挑战及应对.pdf
大模型时代下的安全挑战及应对.pdf
AI大模型赋能,aPaaS+iPaaS构建新一代数智化应用.pdf
AI大模型赋能,aPaaS+iPaaS构建新一代数智化应用.pdf
推理模型综合测评报告+2025.pdf
推理模型综合测评报告+2025.pdf
AI眼镜「预选赛」格局报告.pdf
AI眼镜「预选赛」格局报告.pdf
AI Agent在人力资源落地的5个案例故事.pdf
AI Agent在人力资源落地的5个案例故事.pdf
【IT运维监控】ZABBIX安装配置与功能详解:从环境搭建到监控管理全面解析
内容概要:本文档详细介绍了ZABBIX监控系统的安装与使用方法。首先,描述了在CentOS 6环境下安装ZABBIX监控服务器和被监控服务器的具体步骤,包括软件源配置、数据库创建、服务启动等。接着,对ZABBIX的监控界面进行了全面解析,涵盖浏览器栏、菜单栏、子菜单栏、用户操作栏、时间条和图形显示区等七个部分。其中重点介绍了Monitoring(监控设备数据)、Inventory(资产清单)、Reports(性能报告)、Configuration(设备监控配置)、Administration(通用配置管理)五大菜单下的各项功能。最后,对常用功能如Dashboard(Zabbix server运行情况)、Web(web服务器访问速度和响应时间监控)、Events(服务器异常记录)、Graphs(监控图形界面)、Screens(不同主机同一类型硬件或参数对比)、Host groups(设备分组)、Templates(监控模板)、Hosts(主机管理)、Discovery(主机自动发现)、General(基本参数配置)、Profile(用户基本参数配置)、Users(用户和用户组管理)进行了详细说明。;
适合人群:具备Linux基础,负责服务器运维或监控系统的IT技术人员。;
使用场景及目标:①实现对服务器、网络设备等IT基础设施的集中化监控;②掌握ZABBIX的安装部署流程,能够独立搭建监控环境;③熟悉ZABBIX各模块功能,根据实际需求定制监控方案,保障系统稳定运行。;
其他说明:本文档提供了从安装到使用的全流程指导,适用于初次接触ZABBIX的用户,同时也为有经验的用户提供参考。在实际操作过程中,建议根据自身环境调整相关配置。
【中间件部署】WebLogic12安装与配置指南:从环境搭建到管理服务器启动全流程解析了WebLogic
内容概要:本文详细介绍了WebLogic 12的安装过程,包括从下载安装包到最终启动管理服务器的每一步骤。首先提供了下载地址及安装要求链接,接着按顺序讲解了启动安装包、配置安装目录、选择安装类型和组件、安装JDK、选择安装路径、安装Windows服务、选择开始菜单文件夹、确认安装概要、开始安装直至安装完成的步骤。安装完成后,通过启动配置向导创建新的WebLogic域,指定了域名、位置、管理用户及密码、服务器启动模式和JDK、管理服务器的名称、IP地址和端口号等配置,并最终启动管理服务器,访问管理控制台。
适合人群:适用于初次接触WebLogic的开发人员和运维人员,尤其是那些需要部署Java应用的企业级开发人员。
使用场景及目标:①帮助用户快速掌握WebLogic 12的安装流程;②指导用户创建并配置WebLogic域,以便部署和管理Java应用程序;③提供详细的安装指南,减少安装过程中可能出现的问题。
阅读建议:由于WebLogic的安装涉及多个步骤和配置选项,建议读者按照文中提供的步骤逐一进行实践,并仔细阅读每个界面的提示信息,确保安装过程顺利。此外,对于关键配置(如用户密码、JDK版本等),建议根据实际需求进行适当调整。
【数据库备份恢复】Zmanda ZRM工具实现Mysql数据库备份与恢复:详细操作流程及配置说明
内容概要:本文档详细介绍了使用Zmanda Recovery Manager (ZRM) 对MySQL数据库进行备份和恢复的操作步骤。ZRM是Zmanda公司开发的一款用于MySQL备份与恢复的工具,支持完整备份、增量备份、逻辑备份和裸备份等多种方式,并且可以对备份数据进行压缩和加密。文档涵盖了ZRM的简介、安装、配置、备份执行、备份状态查看、备份验证、定时备份设置以及数据恢复等内容。此外,还提供了详细的命令行操作示例,如创建备份用户、执行备份命令、查看备份状态、设置定时备份等。最后,文档提及了ZRM的日志文件位置及其重要性。
适合人群:具备一定Linux命令行操作基础,负责MySQL数据库管理和维护的技术人员。
使用场景及目标:①掌握ZRM的基本功能和配置方法;②学会如何通过命令行进行MySQL数据库的备份与恢复;③了解如何设置定时备份任务以确保数据安全;④能够通过日志文件监控和排查备份恢复过程中出现的问题。
其他说明:ZRM分为商业版和社区版,商业版提供基于WEB的管理界面,而社区版更适合熟悉Unix/Linux命令行操作的用户。在实际应用中,建议用户根据自身需求选择合适的版本,并定期检查备份的有效性和完整性。
IT工程师必备的路由交换技术.pdf
IT工程师必备的路由交换技术.pdf
网络工程HSRP(热备份路由器协议)原理与实践案例
内容概要:本文档详细介绍了HSRP(热备份路由器协议)的理论基础和实际应用,旨在帮助读者深入理解并掌握HSRP的配置与使用。文档分为理论和实践两大部分。理论部分涵盖HSRP的基本概念、工作机制、状态转换及配置要点,包括虚拟IP地址、优先级、抢占机制、定时器等配置项。实践部分通过三个递进的实例,从简单的两层交换机配置到复杂的三层交换机结合VTP、STP和Port Channel的综合配置,逐步展示了HSRP的应用场景。每个实例不仅提供了详细的配置步骤,还进行了正常、异常及恢复情况下的验证,确保读者能够全面掌握HSRP的实际操作。
适合人群:具备一定网络基础知识,特别是对Cisco设备有一定了解的技术人员,如网络管理员或CCNP认证学员。
使用场景及目标:①帮助网络技术人员理解和配置HSRP,提高网络冗余性和可靠性;②通过实例掌握HSRP与其他协议(如VTP、STP)的联合配置;③学会在不同网络环境中验证和排除HSRP相关的问题。
其他说明:该文档不仅适用于初学者入门HSRP,也适合有一定经验的技术人员深入研究。文档提供的实例配置和验证过程非常详细,有助于读者在实际工作中快速上手并解决实际问题。建议读者结合实际设备进行练习,以加深理解和记忆。
从机制与策略探究Linux内核设计之道.pdf
从机制与策略探究Linux内核设计之道.pdf
编程技术正则表达式基础教程:快速入门与实用技巧详解
内容概要:本文旨在30分钟内让读者初步掌握正则表达式的概念和基本用法。文章首先解释了正则表达式的定义及其与通配符的区别,接着通过多个实例讲解了常见的元字符(如\b、.、*、\d等)、限定符(如*、+、?等)、字符类(如[aeiou])、反义代码(如\W、\S等)、替换(如|)、分组(如())、后向引用(如\1)、零宽断言(如(?=exp))等关键知识点。此外,还介绍了正则表达式的贪婪与懒惰模式,以及.Net环境中常用的处理选项(如IgnoreCase、Multiline等)。最后,简要提及了一些高级特性,如平衡组和递归匹配。
适合人群:适合没有正则表达式使用经验,希望快速入门的学习者,尤其是有一定编程基础的开发者。
使用场景及目标:①帮助读者理解正则表达式的基本概念和应用场景;②提供简单易懂的例子,使读者能够在实践中逐步掌握正则表达式的使用技巧;③作为日常工作中的正则表达式语法参考手册。
其他说明:本文不仅适合初次接触正则表达式的读者,对于有经验的开发者也有一定的参考价值。文中提供的示例和解释较为详尽,便于理解和记忆。此外,文章还推荐了一些网上资源和参考文献,供有兴趣深入了解的读者进一步学习。
IBM-X手册-(含V2CPU)NEW.xlsx
IBM-X手册-(含V2CPU)NEW.xlsx
AI大模型关键知识点复习总结
内容概要:本文详细介绍了AI大模型领域的关键术语、技术及应用,涵盖大型语言模型(LLM)、多模态大模型(LMM)、词嵌入、神经网络、循环神经网络(RNN)、长短时记忆网络(LSTM)、门控循环单元(GRU)、向量数据库、召回、Agent、多Agent、Zero-shot Learning、Fine-tuning等。文章还探讨了大模型参数级别、TOKEN、涌现能力、LLMs的“复读机”问题、Norm方式、Bert、LLaMA、ChatGLM等模型的原理及应用场景。此外,文中涉及多模态大模型的处理机制、分布式训练框架、模型的可解释性和公平性、训练过程、数据处理、评估方法、防止过拟合和欠拟合、优化算法、Loss分析、模型幻觉、处理长文本、训练中文大模型、LoRA原理、LangChain框架、推理过程、Zero-shot和Few-shot学习、泛化能力、微调与指令微调、思维链、大模型与强化学习、Transformer模型、位置编码、Tokenizer实现、大模型微调策略及模型评测等多个方面。;
适合人群:对AI大模型领域有兴趣的研究人员、工程师、数据科学家及相关从业者。;
使用场景及目标:①了解AI大模型的关键术语和技术原理;②掌握大型语言模型和多模态大模型的构建与应用;③学习大模型训练、优化、评估及推理的方法;④探索大模型在自然语言处理和其他领域的实际应用。;
其他说明:本文内容丰富,覆盖面广,适合希望深入了解AI大模型领域的读者。文中不仅提供了理论知识,还结合了实际应用案例,帮助读者更好地理解和应用相关技术。
【自然语言处理】Transformer模型详解:自注意力机制与编码解码架构在机器翻译中的应用
内容概要:本文详细介绍了Transformer模型的架构及其各个组件的工作原理。2017年Google提出的Transformer模型摒弃了传统的RNN结构,采用Self-Attention机制,实现了并行计算的优势。Transformer模型主要由编码器和解码器组成,每部分均包含多个相同的层级,每个层级又由Self-Attention层和前馈神经网络构成。其中,Self-Attention机制允许模型在处理某个词时参考句子中其他词的信息,而多头注意力机制则通过不同角度捕捉词间关系。此外,模型还引入了位置编码以保留词序信息,并使用Padding Mask和Sequence Mask确保有效处理不同长度的输入序列。最后,解码器通过线性层和Softmax层将输出向量转换为目标词汇。
适合人群:对自然语言处理有一定了解的研究人员和技术爱好者,尤其是希望深入理解Transformer模型内部运作机制的读者。
使用场景及目标:①理解Self-Attention机制如何帮助模型捕捉句子中词语间的复杂关系;②掌握位置编码的作用及其对词序的影响;③学习如何通过Mask技术优化模型性能,避免无效计算;④探索Transformer模型在机器翻译等任务中的应用潜力。
阅读建议:本文内容较为专业,建议读者在阅读前先熟悉基本的深度学习概念和NLP基础知识。由于文中涉及较多数学公式和图形解释,建议结合图形仔细研读各部分内容,特别是Self-Attention和多头注意力机制的计算过程。同时,可参考相关开源实现代码加深理解。
计算机二级考试Access选择题+答案(完整题库).pdf
计算机二级考试Access选择题+答案(完整题库).pdf
【大模型微调与部署】基于llama-factory的大规模语言模型微调及量化部署全流程指南
内容概要:本文档详细介绍了大模型微调的实际操作流程,以llama-factory项目为核心,涵盖了从环境搭建、模型训练、微调、评估到部署的全过程。首先,文档提供了详细的前置准备工作,包括硬件和软件环境的准备,如英伟达显卡驱动、CUDA、Python环境、Miniconda、Git等的安装和校验。接着,文档逐步讲解了如何拉取和安装LLaMA-Factory代码及其依赖,创建和激活虚拟环境,以及量化环境的配置。随后,文档深入探讨了微调数据集的选择与格式,微调命令的参数解析,以及如何从中断处继续训练。此外,还介绍了模型评估的方法,包括使用主流评测基准和自动化评测项目。最后,文档阐述了模型的批量推理、部署(包括LoRA模型合并导出、格式转换、ollama安装与使用)、以及API服务的启动和调用方法。
适合人群:具备一定深度学习和自然语言处理基础的研发人员,尤其是对大模型微调和部署感兴趣的工程师。
使用场景及目标:①帮助用户快速搭建大模型微调所需的软硬件环境;②指导用户进行模型微调、评估和部署;③提供详细的命令和参数解析,确保用户能够顺利完成大模型的训练和优化;④支持用户将训练好的模型通过API服务集成到实际业务中。
阅读建议:本文档内容详尽,涉及多个技术细节和命令操作,建议读者在实践中逐步参照文档步骤进行操作,遇到问题时可以参考官方文档或社区支持。同时,建议读者熟悉Python编程和命令行操作,以便更好地理解和应用文档中的内容。
【企业RAG技术实战】基于RAGFlow的大型语言模型环境配置与应用实践
内容概要:本文档《企业RAG技术实战.pdf》详细介绍了RAG(Retrieval-Augmented Generation)技术及其在大型语言模型中的应用。首先概述了RAG的基本概念和相关调查研究,提供了GitHub项目链接作为进一步学习的资源。接着重点讲解了RAGFlow项目的安装与配置,包括WSL、Docker环境的搭建,以及如何通过Git克隆项目并启动服务。文档还探讨了使用不同模型(如OpenAI、通义千问、Ollama)的方法,以及如何准备数据、构建知识库,并实现问答系统的具体步骤。此外,文档深入讨论了高级RAG技术,如模块化RAG、重写-检索-阅读(RRR)、条件模式、迭代和递归检索等。最后,文档介绍了RAG的效果评估方法,包括常用的评估工具和指标,如Ragas、TruLens、Llama-Index等。
适合人群:对RAG技术感兴趣的企业开发者和技术人员,尤其是那些希望将RAG应用于实际项目中的专业人士。
使用场景及目标:①掌握RAG技术的基础理论和实践方法;②学会搭建和配置RAGFlow项目,包括环境设置和模型选择;③了解如何构建知识库并实现问答系统;④熟悉RAG的高级技术和应用场景,如模块化RAG、RRR、条件模式等;⑤掌握RAG效果评估的方法和工具,确保系统的性能和可靠性。
其他说明:文档提供了丰富的代码示例和详细的配置指南,帮助读者更好地理解和应用RAG技术。同时,文档还附带了多个GitHub项目链接,方便读者获取更多资源和支持。
【自然语言处理】DeepSeek自学手册:从模型训练到应用场景的全面解析
内容概要:本文详细介绍DeepSeek V3和R1两大模型的训练过程、架构特点及其性能表现。DeepSeek V3作为一个非推理型MoE语言模型,在数学、代码等任务上表现出色,训练成本低廉且采用了多Token预测、多头潜在注意力等创新技术。DeepSeek R1则是一个强大的推理模型,擅长处理复杂任务,在数学推理、代码竞赛等方面成绩斐然。文中还探讨了R1的局限性如语言混合问题、提示词敏感度等,并提供了针对R1优化的提示词技巧。此外,文章列举了DeepSeek在文本生成、代码生成、绘图等多个应用场景中的具体实现方式,以及面对官方应用卡慢问题时的多种替代方案,包括在线平台和本地部署的选择。
适合人群:对大型语言模型有兴趣的研究人员、开发人员及希望深入了解DeepSeek工作原理和技术细节的技术爱好者。
使用场景及目标:①理解DeepSeek V3和R1的训练机制和技术特性;②掌握针对R1优化的提示词技巧以提高生成内容的质量;③探索DeepSeek在不同领域的应用实例,如文本生成、代码生成等;④了解当遇到官方应用性能问题时,如何选择合适的替代方案来继续使用DeepSeek的功能。
其他说明:随着技术的发展,DeepSeek不断迭代更新,文中提及的内容更新截至2025年2月10日。对于想要深入研究或实际应用DeepSeek的用户而言,持续关注官方最新动态非常重要。
【Hugging Face平台】基于Transformers库的NLP与CV模型快速入门:涵盖模型、数据集及应用实例介绍
内容概要:本文详细介绍了Hugging Face平台及其主要功能模块,包括Models(模型)、Datasets(数据集)、Spaces(分享空间)、Docs(文档)和Solutions(解决方案)。Hugging Face作为一个知名的NLP和AI模型托管平台,提供了丰富的预训练模型和数据集资源,涵盖计算机视觉、自然语言处理、语音处理、多模态、表格处理以及强化学习等多个领域。文章还具体讲解了如何使用transformers库快速加载和应用模型,如通过pipeline函数调用模型进行预测,以及如何自定义加载分词器和模型结构。此外,文中展示了如何导入数据集并训练模型,包括数据预处理、设置训练参数、定义模型和启动训练过程等步骤。;
适合人群:对机器学习尤其是自然语言处理和计算机视觉感兴趣的开发者、研究人员和技术爱好者,尤其是有一定Python编程基础并希望快速上手使用预训练模型的人群。;
使用场景及目标:①快速获取和使用最新的预训练模型,降低模型部署门槛;②简化数据集获取流程,加速模型训练和评估;③探索和分享AI应用的新思路,促进社区交流与合作;④掌握基于transformers库的模型加载、训练及调优方法。;
其他说明:Hugging Face不仅是一个模型和数据集的集合地,它还是一个活跃的技术社区,用户可以通过Spaces分享自己的项目和见解。此外,平台提供的详细文档和示例代码能够帮助用户更好地理解和使用这些资源。建议读者在实践中结合官方文档深入学习,充分利用平台提供的工具和服务。
【计算机职业英语】NCRE一级考试样卷解析:听力理解、词汇与阅读写作综合训练
内容概要:本文档为NCRE计算机职业英语一级考试样卷,旨在测试考生对计算机相关英语的理解与应用能力。文档分为四个部分:听力理解、词汇、阅读理解和写作。听力理解部分包括三节,每节有不同的题型和答题要求,考生需根据听到的内容选择正确答案。词汇部分要求考生将术语与解释匹配,或根据上下文选择正确的词汇填空。阅读理解部分包含多篇文章,考生需根据文章内容回答选择题。写作部分要求考生撰写一份会议备忘录,安排与市场部门的会议讨论新产品发布事宜。
适合人群:准备参加NCRE计算机职业英语一级考试的考生,尤其是希望提高计算机领域英语听说读写能力的人士。
使用场景及目标:①帮助考生熟悉考试题型和答题技巧;②提升考生在计算机相关领域的英语综合运用能力;③为考生提供实际操作练习的机会,确保在真实考试中能够从容应对。
其他说明:此样卷不仅提供了详细的题目示例,还附有明确的答题指导,使考生能够在模拟环境中进行充分练习,从而更好地准备正式考试。考生应认真对待每个部分,尤其是听力理解部分,注意训练自己的听力反应速度和准确性。
【自然语言处理】基于Embedding技术的语义理解与模型微调
内容概要:本文详细介绍了Embedding技术及其实践应用,首先阐述了Word2Vec这一著名词向量表示方法的原理,并通过代码实例展示了如何使用PyTorch实现简单的词向量嵌入。接着,文章深入探讨了使用llamaIndex进行Embedding微调的过程,包括环境搭建、数据准备、模型训练与评估等步骤。此外,还介绍了如何使用autotrain工具进行自动化微调,以及如何利用MRR等指标对不同Embedding模型(如OpenAI、HuggingFace等)进行性能评估。最后,文章提到了MTEB(Massive Text Embedding Benchmark)作为当前最权威的Embedding评测平台,并讲解了如何自定义评测任务和模型。
适合人群:具备一定机器学习和自然语言处理基础知识,对Embedding技术感兴趣的研究人员和技术开发者。
使用场景及目标:①理解Word2Vec等经典Embedding技术的工作机制;②掌握使用llamaIndex和autotrain进行Embedding微调的方法;③学会使用MRR等指标评估不同Embedding模型的表现;④熟悉MTEB平台,能够自定义评测任务和模型,提升模型在特定任务上的表现。
其他说明:本文不仅提供了详细的理论讲解,还附有丰富的代码示例,帮助读者更好地理解和实践Embedding技术。同时,文中提及的多个开源工具和资源也为读者提供了便捷的学习和开发途径。
C++基础知识点汇总与面试题解析
内容概要:本文档涵盖了C++编程中的60个核心问题,这些问题深入浅出地介绍了C++的基础知识和高级特性。文档从类的定义与实例化开始,逐步探讨了继承、多态、虚函数等面向对象编程的重要概念,解析了封装的意义及其代码实现。接着,文档详细阐述了内存管理和异常处理机制,包括如何预防内存泄漏、堆栈的区别、动态内存分配的方式等。此外,文档还讲解了C++11引入的新特性,如智能指针、Lambda表达式、自动类型推导等,并介绍了常见的设计模式如单例模式、观察者模式等。最后,文档涉及了线程创建和同步操作、STL容器及算法、输入输出流、浮点数比较精度问题等多个实用主题,为C++开发者提供了全面的知识体系。
适用人群:具备一定编程基础,尤其是正在学习或使用C++语言的程序员,包括初学者和有一定经验的研发人员。
使用场景及目标:①帮助初学者理解C++语言的基本概念和语法结构;②为中级开发者提供深入理解和解决实际问题的技巧;③协助高级开发者掌握C++最新特性和最佳实践,提高代码质量和性能。
其他说明:本文档不仅适合自学,也非常适合作为面试准备资料,每个问题都配有详细的解答和示例代码,便于读者理解和实践。文档内容详尽,覆盖面广,对于想要系统学习C++或者准备技术面试的人来说是非常有价值的参考资料。
Transformer面试题总结97道:涵盖核心技术、训练技巧及应用场景解析
内容概要:本文档《Transformer面试题总结97道.pdf》详细探讨了Transformer模型的核心原理、训练技巧及其在自然语言处理(NLP)和其他AI领域的应用。文档涵盖了Transformer的数学基础,如自注意力机制、Feed Forward层的训练、位置编码的作用等;深入讨论了模型的优化策略,包括降低计算复杂度、参数量减少的方法;分析了BERT、GPT等代表性模型的优点和局限性;探讨了Transformer在不同任务中的应用,如Zero-shot Learning、对话系统、NER等;并介绍了模型的增量训练、
【人工智能大模型】大模型岗位面试全纪录:涵盖多家企业面试流程与经验总结及岗位要求分析
内容概要:本文记录了作者在大模型岗位求职过程中与多家知名企业和初创公司的面试经历。涵盖了从大厂如字节、阿里达摩院、百度文心到新兴企业如面壁智能、衔远等的面试流程和感受。面试内容涉及算法题(leetcode)、大模型技术细节(如transformer架构、分布式训练等)及对未来技术方向的理解。文中不仅反映了各公司在技术侧重点上的差异,还透露出行业对复合型人才的需求趋势,即既懂模型又熟悉工程实现的人才更受青睐。;
适合人群:对大模型领域感兴趣的求职者,尤其是希望了解行业现状和技术要求的研发人员。;
使用场景及目标:①帮助读者了解大模型岗位的面试形式和考察重点;②为准备类似职位的候选人提供参考,明确所需技能和知识体系;③启发求职者思考自身职业发展方向,特别是在模型、框架、底层技术等方面的能力培养。;
其他说明:作者指出大模型领域的快速发展使得求职者需要不断更新知识,同时强调了跨学科能力的重要性。文中提及部分公司提供的薪资待遇较为优厚,但同时也存在因地域或个人背景而产生的差异。此外,作者表达了对未来技术方向特别是RLHF(基于人类反馈的强化学习)的兴趣和发展潜力的认可。
深度学习AI大模型基础环境搭建:PyTorch与CUDA配置及优化技术详解
内容概要:本文详细介绍了AI大模型基础环境的搭建过程,涵盖了所需的软件包(如PyTorch、torchvision、torchaudio、CUDA、bitsandbytes等)、服务器配置要求以及具体的安装步骤。文章首先概述了大模型基础环境的依赖项及其作用,接着重点讲解了conda环境的安装与配置,包括创建和管理虚拟环境、安装特定版本的PyTorch及相关库。对于CUDA 11.3的安装,文章给出了详细的命令和注意事项,特别是bitsandbytes库的手动编译和安装步骤。最后,文章还简要介绍了如何使用Hugging Face或百度飞桨获取AI模型,并通过合理的prompt优化大模型的输出结果。
适合人群:具备一定编程基础,尤其是对深度学习和AI领域有一定了解的研发人员或学生。
使用场景及目标:①帮助用户快速搭建适合大模型运行的基础环境,包括但不限于PyTorch、CUDA等依赖项的安装;②指导用户如何通过合理的prompt优化大模型的输出结果,提高模型的应用效果;③适用于希望深入了解大模型部署流程和技术细节的技术爱好者。
阅读建议:由于涉及较多的技术细节和命令行操作,建议读者在阅读过程中结合实际操作进行练习,尤其是在conda环境管理和CUDA安装部分。同时,对于bitsandbytes的安装,建议仔细阅读官方文档或源码注释,确保编译和安装过程顺利进行。
大型语言模型微调技术详解:7种方法及其在网络结构中的应用
内容概要:本文详细介绍了大型语言模型(LLM)的微调方法及其重要性。大型语言模型的训练分为预训练和微调两个阶段,预训练阶段通过无标签大数据集使模型掌握语言统计特征,形成基座模型;微调阶段则是通过特定领域的数据集对模型进行优化,使其更好地适应具体任务,如情感分析、实体识别等。文中重点讲解了七种微调方法:LoRA、QLoRA、适配器调整、前缀调整、提示调整、P-Tuning和P-Tuning v2。这些方法通过引入低秩矩阵、量化技术、适配器、前缀、提示、LSTM等方式,分别从不同角度优化模型性能,解决计算资源、模型稳定性等问题。此外,还提及了PILL和SSF两种辅助微调技术。文章最后总结了微调的重要性,强调了微调与迁移学习的关系,并指出了选择合适微调策略的考量因素。
适合人群:对大型语言模型有一定了解,希望深入了解微调技术和实践的研发人员、研究人员和工程师。
使用场景及目标:①帮助读者理解大型语言模型的微调过程和技术细节;②为实际项目中选择合适的微调方法提供参考;③指导如何根据计算资源、任务复杂性和数据量等因素选择最佳微调策略。
其他说明:微调是迁移学习的一种形式,通过预训练模型的再训练,可以在小数据集上实现高效学习。选择微调方法时,需综合考虑任务需求、计算资源和预期性能,以确保模型在实际应用中的泛化能力。
【自然语言处理】基于Sentence Transformers与ColBERT的rerank模型实践:从安装到微调及评估全流程解析
内容概要:本文详细介绍了rerank技术的原理与实践,涵盖Sentence Transformers、ColBERT等模型的安装与使用。通过具体的代码示例,如安装Sentence Transformers、使用bi-encoder和cross-encoder进行文本编码、以及使用网易有道的embedding和rerank模型,展示了如何构建和优化rerank系统。此外,文章还深入探讨了模型微调的方法,包括环境搭建、数据格式、微调脚本编写,并介绍了使用autotrain进行微调的具体步骤。最后,文章讲解了如何使用MTEB和c-mteb对rerank模型进行评估,确保模型性能达到最优。
适合人群:具备一定自然语言处理和深度学习基础的研究人员和工程师,特别是那些希望深入了解并应用rerank技术于实际项目中的人群。
使用场景及目标:①帮助读者理解Sentence Transformers、ColBERT等模型的工作机制;②指导读者完成从环境搭建到模型评估的完整rerank系统开发流程;③通过实际代码示例,让读者掌握如何使用网易有道的embedding和rerank模型;④提供详细的模型微调指南,使读者能够根据具体需求调整模型参数,提升模型性能。
其他说明:本文不仅提供了理论知识,还包含了大量可操作性强的代码示例,帮助读者快速上手实践。同时,文中提及的工具和资源均为开源项目,便于读者进一步探索和学习。建议读者在学习过程中结合实际案例进行实践,以加深理解和掌握。
人工智能趋势报告(双语翻译版本).pdf
人工智能趋势报告(双语翻译版本).pdf
DeepSeek在银行业务场景的应用.pdf
DeepSeek在银行业务场景的应用.pdf
2025年人类发展报告:人工智能时代的人与可能性英.pdf
2025年人类发展报告:人工智能时代的人与可能性英.pdf
2025当AI接管方向盘:自动驾驶场景下的人机交互认知重构、变革及对策研究报告(英文版).pdf
2025当AI接管方向盘:自动驾驶场景下的人机交互认知重构、变革及对策研究报告(英文版).pdf
大型国企如何实施IT运维SRE转型——暨北京移动IT运维转型实践分享.pdf
大型国企如何实施IT运维SRE转型——暨北京移动IT运维转型实践分享.pdf