第二十七天 | 77.组合

首先复习了二叉树前两周。

回溯算法能解决如下问题:

  • 组合问题:N个数里面按一定规则找出k个数的集合
  • 排列问题:N个数按一定规则全排列,有几种排列方式
  • 切割问题:一个字符串按一定规则有几种切割方式
  • 子集问题:一个N个数的集合里有多少符合条件的子集
  • 棋盘问题:N皇后,解数独等等

回溯算法

回溯法解决的问题都可以抽象为树形结构所有回溯法的问题都可以抽象为树形结构。

因为回溯法解决的都是在集合中递归查找子集,集合的大小就构成了树的宽度,递归的深度就构成了树

  • 回溯函数模板返回值以及参数

在回溯算法中,习惯是函数起名字为backtracking。。

回溯算法中函数返回值一般为void。

再来看一下参数,因为回溯算法需要的参数可不像二叉树递归的时候那么容易一次性确定下来,所以一般是先写逻辑,然后需要什么参数,就填什么参数。

  • 回溯函数终止条件

既然是树形结构,遍历树形结构一定要有终止条件。

所以回溯也有要终止条件。

什么时候达到了终止条件,树中就可以看出,一般来说搜到叶子节点了,也就找到了满足条件的一条答案,把这个答案存放起来,并结束本层递归。

  • 回溯搜索的遍历过程

回溯法一般是在集合中递归搜索,集合的大小构成了树的宽度,递归的深度构成的树的深度。

for循环就是遍历集合区间,可以理解一个节点有多少个孩子,这个for循环就执行多少次。

backtracking这里自己调用自己,实现递归。

从图中看出for循环可以理解是横向遍历,backtracking(递归)就是纵向遍历,这样就把这棵树全遍历完了,一般来说,搜索叶子节点就是找的其中一个结果了。

void backtracking(参数) {
    if (终止条件) {
        存放结果;
        return;
    }

    for (选择:本层集合中元素(树中节点孩子的数量就是集合的大小)) {
        处理节点;
        backtracking(路径,选择列表); // 递归
        回溯,撤销处理结果
    }
}

题目:77.组合

递归函数的参数和返回值:

确定终止条件:

单层递归逻辑:

class Solution {
private:
    vector<vector<int>> result;  //用来存放符合条件的结果的集合
    vector<int> path;    //用来存放符合条件的结果
    void backtracking(int n, int k, int startIndex) {
        if (path.size() == k) {
            result.push_back(path);    //收集结果
            return;
        }
        for(int i = startIndex; i <= n; i++) {
            path.push_back(i);   //处理节点
            backtracking(n, k, i + 1);    //递归
            path.pop_back();     //回溯,撤销处理的节点
        }
    }
public:
    vector<vector<int>> combine(int n, int k) {
        backtracking(n, k, 1);
        return result;    
    }
};

剪枝操作:

优化过程如下:

  1. 已经选择的元素个数:path.size();

  2. 所需需要的元素个数为: k - path.size();

  3. 列表中剩余元素(n-i) >= 所需需要的元素个数(k - path.size())

  4. 在集合n中至多要从该起始位置 : i <= n - (k - path.size()) + 1,开始遍历

为什么有个+1呢,因为包括起始位置,我们要是一个左闭的集合。

举个例子,n = 4,k = 3, 目前已经选取的元素为0(path.size为0),n - (k - 0) + 1 即 4 - ( 3 - 0) + 1 = 2。

剪枝后:

class Solution {
private:
    vector<vector<int>> result;  //用来存放符合条件的结果的集合
    vector<int> path;    //用来存放符合条件的结果
    void backtracking(int n, int k, int startIndex) {
        if (path.size() == k) {
            result.push_back(path);    //收集结果
            return;
        }
        for(int i = startIndex; i <= n - (k - path.size()) + 1; i++) {   //剪枝
            path.push_back(i);   //处理节点
            backtracking(n, k, i + 1);    //递归
            path.pop_back();     //回溯,撤销处理的节点
        }
    }
public:
    vector<vector<int>> combine(int n, int k) {
        backtracking(n, k, 1);
        return result;    
    }
};

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值