大数据框架

一、Hadoop入门,了解什么是Hadoop
1、Hadoop产生背景
2、Hadoop在大数据、云计算中的位置和关系
3、国内外Hadoop应用案例介绍
4、国内Hadoop的就业情况分析及课程大纲介绍
5、分布式系统概述
6、Hadoop生态圈以及各组成部分的简介
7、Hadoop核心MapReduce例子说明
二、分布式文件系统HDFS,是数据库管理员的基础课程
1、分布式文件系统HDFS简介
2、HDFS的系统组成介绍
3、HDFS的组成部分详解
4、副本存放策略及路由规则
5、NameNode Federation
6、命令行接口
7、Java接口
8、客户端与HDFS的数据流讲解
9、HDFS的可用性(HA)
三、初级MapReduce,成为Hadoop开发人员的基础课程
1、如何理解map、reduce计算模型
2、剖析伪分布式下MapReduce作业的执行过程
3、Yarn模型
4、序列化
5、MapReduce的类型与格式
6、MapReduce开发环境搭建
7、MapReduce应用开发
8、更多示例讲解,熟悉MapReduce算法原理
四、高级MapReduce,高级Hadoop开发人员的关键课程
1、使用压缩分隔减少输入规模
2、利用Combiner减少中间数据
3、编写Partitioner优化负载均衡
4、如何自定义排序规则
5、如何自定义分组规则
6、MapReduce优化
7、编程实战
五、Hadoop集群与管理,是数据库管理员的高级课程
1、Hadoop集群的搭建
2、Hadoop集群的监控
3、Hadoop集群的管理
4、集群下运行MapReduce程序
六、ZooKeeper基础知识,构建分布式系统的基础框架
1、ZooKeeper体现结构
2、ZooKeeper集群的安装
3、操作ZooKeeper
七、HBase基础知识,面向列的实时分布式数据库
1、HBase定义
2、HBase与RDBMS的对比
3、数据模型
4、系统架构
5、HBase上的MapReduce
6、表的设计
八、HBase集群及其管理
1、集群的搭建过程讲解
2、集群的监控
3、集群的管理
九、HBase客户端
1、HBase Shell以及演示
2、Java客户端以及代码演示
十、Pig基础知识,进行Hadoop计算的另一种框架
1、Pig概述
2、安装Pig
3、使用Pig完成手机流量统计业务
十一、Hive,使用SQL进行计算的Hadoop框架
1、数据仓库基础知识
2、Hive定义
3、Hive体系结构简介
4、Hive集群
5、客户端简介
6、HiveQL定义
7、HiveQL与SQL的比较
8、数据类型
9、表与表分区概念
10、表的操作与CLI客户端演示
11、数据导入与CLI客户端演示
12、查询数据与CLI客户端演示
13、数据的连接与CLI客户端演示
14、用户自定义函数(UDF)的开发与演示
十二、Sqoop,Hadoop与rdbms进行数据转换的框架
1、配置Sqoop
2、使用Sqoop把数据从MySQL导入到HDFS中
3、使用Sqoop把数据从HDFS导出到MySQL中
十三、Storm
1、Storm基础知识:包括Storm的基本概念和Storm应用
场景,体系结构与基本原理,Storm和Hadoop的对比
2、Storm集群搭建:详细讲述Storm集群的安装和安装时常见问题
3、Storm组件介绍: spout、bolt、stream groupings等
4、Storm消息可靠性:消息失败的重发
5、Hadoop 2.0和Storm的整合:Storm on YARN

6、Storm编程实战







  • 大数据技术的具体内容?

    分布式存储计算架构(强烈推荐:Hadoop)

    分布式程序设计(包含:Apache Pig或者Hive)

    分布式文件系统(比如:Google GFS)

    多种存储模型,主要包含文档,图,键值,时间序列这几种存储模型(比如:BigTable,Apollo, DynamoDB等)

    数据收集架构(比如:Kinesis,Kafla)

    集成开发环境(比如:R-Studio)

    程序开发辅助工具(比如:大量的第三方开发辅助工具)

    调度协调架构工具(比如:Apache Aurora)

    机器学习(常用的有Apache Mahout 或 H2O)

    托管管理(比如:Apache Hadoop Benchmarking)

    安全管理(常用的有Gateway)

    大数据系统部署(可以看下Apache Ambari)

    搜索引擎架构( 学习或者企业都建议使用Lucene搜索引擎)

    多种数据库的演变(MySQL/Memcached)

    商业智能(大力推荐:Jaspersoft )

    数据可视化(这个工具就很多了,可以根据实际需要来选择)

    大数据处理算法(10大经典算法)

  • 大数据中常用的分析技术

    A/B测试、关联规则挖掘、数据聚类、

    数据融合和集成、遗传算法、自然语言处理、

    神经网络、神经分析、优化、模式识别、

    预测模型、回归、情绪分析、信号处理、

    空间分析、统计、模拟、时间序列分析

  • 大数据未来的应用趋势预测

    每个人健康和生活都需要的个性化建议;

    企业管理中的选择和开拓新市场的可靠信息来源;

    社会治理中大众利益的发现与政策满足。


http://edu.51cto.com/roadmap/view/id-89.html

win7下面配置环境以及mapreduce架构分析与应用
Ambari、ZooKeeper、Hbase与Scala应用介绍与应用
征服Spark

没有更多推荐了,返回首页