最优化方法:线性规划标准化和单纯形表格法

提示:如果前面定理太复杂可以先看例题倒过来看

前言

小记一下,求解线性规划的单纯形法。

一、线性规划标准型

1.1标准型形式

形如:

45cf0a8729c94b9fae35fe55c935e518.png

称为线性规划问题的标准型

其中,

eq?A eq?m%5Ctimes%20n矩阵,且eq?m%3C%20neq?rankA%3Dm
eq?c eq?n维列向量,即eq?c%5E%7BT%7Deq?n维行向量
eq?b eq?m维列向量,且假设eq?b%5Cgeqslant%200

线性规划问题的理论和算法基本都是基于标准型得到的,实际出现的任何 线性规划问题都可以通过变换转为标准型。

(1)如果原问题是极大化目标函数,即eq?%5Cmax%20c%5E%7BT%7Dx。这时只需将目标函数乘以(−1), 则可等价地将其转化为极小化问题,eq?%5Cmin%20c%5E%7BT%7Dx

(2)如果右端项eq?b中的第eq?i个元素是负的, 则在第i个约束方程两边同乘以−1,将其改 成右端项非负的不等式。

(3)若约束方程为≤不等式,则可在相应不等式的左端加上非负松弛变量,将原≤ 不等式变为等式。若约束方程为≥不等式,则可在相应不等式的左端减去非负剩余变量,将原≥不等式变为等式。(松弛变量和剩余变量没啥区别,就是名字不一样,个人感觉)

(4)如果某个变量eq?x_%7Bi%7D是无非负限制的自由变量,则总可以引入两个非负变量eq?%7Bx_%7Bi%7D%7D%27,eq?%7Bx_%7Bi%7D%7D%27%27使 得eq?x_%7Bi%7D%3D%7Bx_%7Bi%7D%7D%27-%7Bx_%7Bi%7D%7D%27%27

1.2标准型例题

将下面线性规划问题转化为标准型。

58cfcba43317455d85367961f1dc8491.png

解:令eq?x_%7B2%7D%3D%7Bx_%7B2%7D%7D%27-%7Bx_%7B2%7D%7D%27%27,其中eq?%7Bx_%7B2%7D%7D%27%5Cgeqslant%200%2C%7Bx_%7B2%7D%7D%27%27%5Cgeqslant%200。引入剩余变量eq?x_%7B5%7D%5Cgeqslant%200,引入松弛变量eq?x_%7B6%7D%5Cgeqslant%200,则标准型为

088c1b3b1b0c481a92c9c31f1e38b796.png

例题用到了处理方法(1)(2)(3)(4),实际情况中可能只用到其中一部分。

二、单纯形表格法

2.1相关概念和定义

eq?A写成分块矩阵eq?A%3D%5Cleft%20%5B%20B%2CN%20%5Cright%20%5D,记eq?x%3D%20%5Cbinom%7Bx_%7BB%7D%7D%7Bx_%7BN%7D%7D

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值