提示:如果前面定理太复杂可以先看例题倒过来看
前言
小记一下,求解线性规划的单纯形法。
一、线性规划标准型
1.1标准型形式
形如:
称为线性规划问题的标准型
其中,
是 |
|
为 |
|
为 |
线性规划问题的理论和算法基本都是基于标准型得到的,实际出现的任何 线性规划问题都可以通过变换转为标准型。
(1)如果原问题是极大化目标函数,即。这时只需将目标函数乘以(−1), 则可等价地将其转化为极小化问题,
。
(2)如果右端项中的第
个元素是负的, 则在第i个约束方程两边同乘以−1,将其改 成右端项非负的不等式。
(3)若约束方程为≤不等式,则可在相应不等式的左端加上非负松弛变量,将原≤ 不等式变为等式。若约束方程为≥不等式,则可在相应不等式的左端减去非负剩余变量,将原≥不等式变为等式。(松弛变量和剩余变量没啥区别,就是名字不一样,个人感觉)
(4)如果某个变量是无非负限制的自由变量,则总可以引入两个非负变量
,
使 得
。
1.2标准型例题
将下面线性规划问题转化为标准型。
解:令,其中
。引入剩余变量
,引入松弛变量
,则标准型为
例题用到了处理方法(1)(2)(3)(4),实际情况中可能只用到其中一部分。
二、单纯形表格法
2.1相关概念和定义
将写成分块矩阵
,记
,