HDU2697+DP

Wa的版本。。。

/*
DP
dp[i][j]:前i个取某些个且cost不超过j得到的最大价值
*/
#include<stdio.h>
#include<string.h>
#include<stdlib.h>
#include<algorithm>
#include<iostream>
#include<queue>
#include<map>
#include<stack>
#include<set>
#include<math.h>
using namespace std;
typedef long long int64;
//typedef __int64 int64;
typedef pair<int64,int64> PII;
#define MP(a,b) make_pair((a),(b)) 
const int maxn = 105;
const int maxm = 10005;
const int inf = 99999099;
const double pi=acos(-1.0);
const double eps = 1e-8;
struct Node{
    int len;
    bool Choosed;
    int maxVal;
}dp[ maxn ][ maxm ];
void init(){
    for( int i=0;i<maxn;i++ ){
        for( int j=0;j<maxm;j++ ){
            dp[i][j].maxVal = 0;
            dp[i][j].len = 0;
            dp[i][j].Choosed = false;
        }
    }
}
int cost[ maxn ];
int main(){
    int T;
    scanf("%d",&T);
    while( T-- ){
        int n,sum;
        scanf("%d%d",&n,&sum);
        //memset( dp,0,sizeof( dp ) );
        init();
        int SumCost = 0;
        int MinCost = inf;
        for( int i=0;i<n;i++ ){
            scanf("%d",&cost[i]);
            SumCost += cost[ i ];
            MinCost = min( MinCost,cost[i] );
        }
        if( MinCost>sum ) {
            printf("0\n");
            continue;
        }
        if( MinCost==sum ) {
            printf("1\n");
            continue;
        }
        if( sum>=SumCost ){
            printf("%d\n",n*n);
            continue;
        }
        
        int ans = 0;
        for( int i=0;i<n;i++ ){
            for( int j=cost[i];j<=sum;j++ ){
                dp[ i ][ j ].maxVal = 1;
                dp[ i ][ j ].len = 1;
                dp[ i ][ j ].Choosed = true;
                ans = 1;
            }
        }//init of dp
        
        for( int i=1;i<n;i++ ){
            for( int j=0;j<=sum;j++ ){
                if( dp[i-1][j].Choosed==false ){
                    if( j>=cost[i] ){
                        if( dp[i-1][j-cost[i]].maxVal+1>=dp[i-1][j].maxVal ){
                            dp[i][j].maxVal = dp[i-1][j-cost[i]].maxVal+1;
                            dp[i][j].len = 1;
                            dp[i][j].Choosed = true;
                        }
                        else {
                            if( dp[i-1][j].maxVal>dp[i][j].maxVal ){
                                dp[i][j].maxVal = dp[i-1][j].maxVal;
                                dp[i][j].len = 0;
                                dp[i][j].Choosed = false;
                            }
                        }
                    }
                    else {
                        if( dp[i-1][j].maxVal>dp[i][j].maxVal ){
                            dp[i][j].maxVal = dp[i-1][j].maxVal;
                            dp[i][j].len = 0;
                            dp[i][j].Choosed = false;
                        }
                    }
                }
                else{
                    if( j>=cost[i] ){
                        if( dp[i-1][j-cost[i]].maxVal-dp[i-1][j-cost[i]].len*dp[i-1][j-cost[i]].len+(dp[i-1][j-cost[i]].len+1)*(dp[i-1][j-cost[i]].len+1)>=dp[i-1][j].maxVal ){
                            dp[i][j].maxVal = dp[i-1][j-cost[i]].maxVal-dp[i-1][j-cost[i]].len*dp[i-1][j-cost[i]].len+(dp[i-1][j-cost[i]].len+1)*(dp[i-1][j-cost[i]].len+1);
                            dp[i][j].len = dp[i-1][j-cost[i]].len+1;
                            dp[i][j].Choosed = true;
                        }
                        else{
                            if( dp[i-1][j].maxVal>dp[i][j].maxVal ){
                                dp[i][j].maxVal = dp[i-1][j].maxVal;
                                dp[i][j].len = 0;
                                dp[i][j].Choosed = false;
                            }
                        }
                    }
                    else{
                        if( dp[i-1][j].maxVal>dp[i][j].maxVal ){
                            dp[i][j].maxVal = dp[i-1][j].maxVal;
                            dp[i][j].len = 0;
                            dp[i][j].Choosed = false;
                        }
                    }
                }
                ans = max(ans,dp[i][j].maxVal);
                //printf("dp[%d][%d].val = %d, len = %d, choose = %d \n",i,j,dp[i][j].maxVal,dp[i][j].len,dp[i][j].Choosed);
            }
        }
        printf("%d\n",ans);
    }
    return 0;
}

Ac代码。。

dp[i][j]:前i个取某些个且cost不超过j得到的最大价值
dp[ i ][ j ] 通过 1 到 i-1 之间的dp[ k ][ ? ] ( 1<=k<i ) 来更新。

如果 dp[ i ][ j ]:取了第i个,则可能是被dp[ k ][ ? ]+ ??更新,反之则为dp[ i-1 ][ j ]

/*
DP
*/
#include<stdio.h>
#include<string.h>
#include<stdlib.h>
#include<algorithm>
#include<iostream>
#include<queue>
#include<map>
#include<stack>
#include<set>
#include<math.h>
using namespace std;
typedef long long int64;
//typedef __int64 int64;
typedef pair<int64,int64> PII;
#define MP(a,b) make_pair((a),(b)) 
const int maxn = 105;
const int inf = 0x7fffffff;
const double pi=acos(-1.0);
const double eps = 1e-8;
int dp[ maxn ][ maxn ];
int a[ maxn ];
int main(){
	int T;
	scanf("%d",&T);
	while( T-- ){
		int n,sum;
		scanf("%d%d",&n,&sum);
		int MinCost = inf;
		for( int i=1;i<=n;i++ ){
			scanf("%d",&a[i]);
			if( a[i]<MinCost ) MinCost = a[i];
		}
		if( MinCost>sum ){
			printf("0\n");
			continue;
		}
		if( MinCost==sum ){
			puts("1");
			continue;
		}
		int ans = 0;
		memset( dp,0,sizeof( dp ) );
		for( int i=1;i<=n;i++ ){
			for( int j=0;j<=sum;j++ ){
				int cnt = 0;
				for( int k=1;k<=i;k++ ){
					cnt += a[ i+1-k ];
					if( cnt>j ) break;
					dp[i][j] = max( dp[i][j],dp[i-k][j-cnt]+k*k );
				}
				dp[i][j] = max( dp[i][j],dp[i-1][j] );
				ans = max( ans,dp[i][j] );
			}
		}
		printf("%d\n",ans);
	}
	return 0;
}



  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: hdu 2829 Lawrence 斜率优化dp 这道题是一道经典的斜率优化dp题目,需要用到单调队列的思想。 题目大意是给定一个序列a,求出一个序列b,使得b[i]表示a[1]~a[i]中的最小值,且满足b[i] = min{b[j] + (i-j)*k},其中k为给定的常数。 我们可以将上式拆开,得到b[i] = min{b[j] - j*k} + i*k,即b[i] = i*k + min{b[j] - j*k},这个式子就是斜率优化dp的形式。 我们可以用单调队列来维护min{b[j] - j*k},具体思路如下: 1. 首先将第一个元素加入队列中。 2. 从第二个元素开始,我们需要将当前元素加入队列中,并且需要维护队列的单调性。 3. 维护单调性的方法是,我们从队列的末尾开始,将队列中所有大于当前元素的元素弹出,直到队列为空或者队列中最后一个元素小于当前元素为止。 4. 弹出元素的同时,我们需要计算它们对应的斜率,即(b[j]-j*k)/(j-i),并将这些斜率与当前元素的斜率比较,如果当前元素的斜率更小,则将当前元素加入队列中。 5. 最后队列中的第一个元素就是min{b[j] - j*k},我们将它加上i*k就得到了b[i]的值。 6. 重复以上步骤直到处理完所有元素。 具体实现可以参考下面的代码: ### 回答2: HDU 2829 Lawrence 斜率优化 DP 是一道经典的斜率优化 DP 题目,其思想是通过维护一个下凸包来优化 DP 算法。下面我们来具体分析一下这道题目。 首先,让我们看一下该题目的描述。题目给定一些木棒,要求我们将这些木棒割成一些给定长度,且要求每种长度的木棒的数量都是一样的,求最小的割枝次数。这是一个典型的背包问题,而且在此基础上还要求每种长度的木棒的数量相同,这就需要我们在状态设计上走一些弯路。 我们来看一下状态的定义。定义 $dp[i][j]$ 表示前 $i$ 个木棒中正好能割出 $j$ 根长度为 $c_i$ 的木棒的最小割枝次数。对于每个 $dp[i][j]$,我们可以分类讨论: 1. 不选当前的木棒,即 $dp[i][j]=dp[i-1][j]$; 2. 选当前的木棒,即 $dp[i][j-k]=dp[i-1][j-k]+k$,其中 $k$ 是 $j/c_i$ 的整数部分。 现在问题再次转化为我们需要在满足等量限制的情况下,求最小的割枝次数。可以看出,这是一个依赖于 $c_i$ 的限制。于是,我们可以通过斜率优化 DP 来解决这个问题。 我们来具体分析一下斜率优化 DP 算法的思路。我们首先来看一下动态规划的状态转移方程 $dp[i][j]=\min\{dp[i-1][k]+x_k(i,j)\}$。可以发现,$dp[i][j]$ 的最小值只与 $dp[i-1][k]$ 和 $x_k(i,j)$ 有关。其中,$x_k(i,j)$ 表示斜率,其值为 $dp[i-1][k]-k\times c_i+j\times c_i$。 接下来,我们需要维护一个下凸包,并通过斜率进行优化。我们具体分析一下该过程。假设我们当前要计算 $dp[i][j]$。首先,我们需要找到当前点 $(i,j)$ 在凸包上的位置,即斜率最小值的位置。然后,我们根据该位置的斜率计算 $dp[i][j]$ 的值。接下来,我们需要将当前点 $(i,j)$ 加入到下凸包上。 我们在加入点的时候需要注意几点。首先,我们需要将凸包中所有斜率比当前点小的点移除,直到该点能够加入到凸包中为止。其次,我们需要判断该点是否能够加入到凸包中。如果不能加入到凸包中,则直接舍弃。最后,我们需要保证凸包中斜率是单调递增的,这就需要在加入新的点之后进行上一步操作。 以上就是该题目的解题思路。需要注意的是,斜率优化 DP 算法并不是万能的,其使用情况需要根据具体的问题情况来确定。同时,该算法中需要维护一个下凸包,可能会增加一些算法的复杂度,建议和常规 DP 算法进行对比,选择最优的算法进行解题。 ### 回答3: 斜率优化DP是一种动态规划优化算法,其主要思路是通过对状态转移方程进行变形,提高算法的时间复杂度。HDU2829 Lawrence问题可以用斜率优化DP解决。 首先,我们需要了解原问题的含义。问题描述如下:有$n$个人在数轴上,第$i$个人的位置为$A_i$,每个人可以携带一定大小的行李,第$i$个人的行李重量为$B_i$,但是每个人只能帮助没有他们重量大的人搬行李。若第$i$个人搬运了第$j$个人的行李,那么第$i$个人会累加$C_{i,j}=\left|A_i-A_j\right|\cdot B_j$的体力消耗。求$m$个人帮助每个人搬运行李的最小体力消耗。 我们可以通过斜率优化DP解决这个问题。记$f_i$为到前$i$个人的最小体力消耗,那么状态转移方程为: $$f_i=\min_{j<i}\{f_j+abs(A_i-A_j)\cdot B_i\}$$ 如果直接使用该方程,时间复杂度为$O(n^2)$,如果$n=10^4$,则需要计算$10^8$次,运算时间极长。斜率优化DP通过一些数学推导将方程变形,将时间复杂度降低到$O(n)$,大大缩短了计算时间。 通过斜率优化DP的推导式子,我们可以得到转移方程为: $$f_i=\min_{j<i}\{f_j+slope(j,i)\}$$ 其中,$slope(j,i)$表示直线$j-i$的斜率。我们可以通过如下方式来求解$slope(j,i)$: $$slope(j,i)=\frac{f_i-f_j}{A_i-A_j}-B_i-B_j$$ 如果$slope(j,i)\leq slope(j,k)$,那么$j$一定不是最优,可以直接舍去,降低计算时间。该算法的时间复杂度为$O(n)$。 综上所述,斜率优化DP是一种动态规划优化算法,可以大大缩短计算时间。在处理类似HDU2829 Lawrence问题的时候,斜率优化DP可以很好地解决问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值