VS Code + Cline + DeepSeek 实现AI编程

vs code 下载安装插件cline

在这里插入图片描述

cline配置模型

一、调用API Key

  1. 获取DeepSeek API Key
    官网地址:https://www.deepseek.com/
    在这里插入图片描述
    点击左上角API开放平台进入,创建一个API Key,如图:
    在这里插入图片描述
  2. 在vscode中cline配置模型,API Provider选择DeepSeek,将上面创建的API Key复制过来,Model中有两个模型都可选择,deepseek-chat对应V3模型,deepseek-reasoner对应R1模型,配置完成后点击Done即可,如图:
    在这里插入图片描述
  3. 上述配置完成即可进行AI对话。

二、调用本地模型

LLM本地部署参考文章:DeepSeek R1 推理模型通过LM Studio实现LLM本地部署
注:以下操作都是在本地部署完成的情况下。

  1. LM Studio中启动本地模型
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
  2. vscode中cline配置模型,API Provider选择LM Studio,Base URL不填,Model ID会显示本地存在的模型,选择上述运行的模型,配置完成后点击Done即可,如图:
    在这里插入图片描述
  3. 上述配置完成即可进行AI对话。
### 使用Zotero与DeepSeek进行文献翻译 #### 文献管理工具Zotero的功能概述 Zotero是一款免费、开源的文献管理工具,广泛应用于学术研究和文献整理领域,尤其适合学术研究人员和学生。这款软件可以与浏览器无缝集成,支持一键抓取网页上的文献信息(如标题、作者、出版年份、摘要等)。它还支持从多个数据库(如PubMed、Web of Science、Google Scholar 等)直接导入文献[^3]。 #### DeepSeek的大规模语言模型特性 DeepSeek作为一种大规模语言模型,具备强大的文本分析、摘要生成以及知识推理能力。这些特点使得DeepSeek不仅能够处理复杂的自然语言任务,还可以通过API接口与其他应用程序交互,从而扩展其他应用的功能范围。然而需要注意的是,在某些特定时间段内,由于用户数量激增可能导致服务器资源紧张,进而影响到API服务的可用性[^2]。 #### 结合使用Zotero与DeepSeek实现文献翻译的方法 虽然当前版本下的DeepSeek并不完全支持向量检索功能,即无法直接针对单篇PDF文档执行问答操作;但是可以通过以下方式利用这两个工具来进行有效的文献翻译: 1. **准备阶段** - 确保已经安装好最新版的Zotero客户端,并注册了相应的DeepSeek账户。 2. **获取待译文献** - 利用Zotero的强大收集功能,将目标文献保存至个人资料库中。这可能涉及到从在线数据库下载全文PDF文件或是手动录入相关信息。 3. **提取需翻译的内容片段** - 打开所需翻译的文章,在Zotero内部预览模式下选取想要转换成另一种语言的文字部分——无论是整段文字还是个别术语均可被选中复制出来备用。 4. **调用DeepSeek API完成翻译** - 将之前拷贝好的文本粘贴进任何能访问互联网的地方(比如记事本),接着借助第三方平台所提供的DeepSeek API端点提交请求。这里假设存在这样一个允许公开测试且不限制次数的服务入口,则只需按照官方文档说明构建合适的HTTP POST消息体即可发起一次成功的机器翻译作业[^1]。 5. **接收并校对结果** - 成功接收到由DeepSeek返回来的多语种对照表之后,仔细核对其准确性并与原文对比查看是否存在明显错误之处。对于那些不太确切或者容易引起歧义表达则建议人工介入调整优化直至满意为止。 ```python import requests def translate_text(text, target_language='en'): url = "https://api.deepseek.example.com/v1/translate" headers = { 'Authorization': 'Bearer YOUR_API_KEY', 'Content-Type': 'application/json' } payload = { "text": text, "target_language": target_language } response = requests.post(url, json=payload, headers=headers) if response.status_code == 200: translated_data = response.json() return translated_data['translation'] else: raise Exception(f"Translation failed with status code {response.status_code}") # Example usage sample_text = "这是一个中文句子的例子。" translated_result = translate_text(sample_text, 'en') print(translated_result) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值