算法 二叉树

本文深入介绍了树和二叉树的概念,包括它们的定义、性质、存储结构以及遍历方式。二叉树的性质如层节点数量、高度和完全二叉树等被详细阐述。代码实现部分展示了如何使用C++进行二叉树的结构定义、创建及三种遍历(先序、中序、后续)的非递归实现。此外,还讨论了如何通过遍历序列重建二叉树的方法。
摘要由CSDN通过智能技术生成

树的定义

树是由n(n>=0)个结点组成的有限集合,如果n = 0,成为空树,如果n > 0,则

  • 有一个特定的称之为根(root)的结点,它只有直接后继,但没有直接前驱
  • 除根以外的其他结点划分为m(m >= 0)个互不相交的有集合T0,T1,…,Tm-1,每个集合又是一棵树,并且称之为根的子树,每棵子树的根节点有且仅有一个直接前驱,但可以有0个或多个直接后继

在这里插入图片描述

  1. 结点的度:一个节点含有的子树的个数成为该结点的度
  2. 树的度:一棵树中,最大的节点的度称为树的度
  3. 叶节点或终端节点:度为零的节点
  4. 非终端节点或分支节点:度不为零的节点
  5. 父亲节点或父节点:若一个节点含有子节点,则这个节点称为其子节点的夫节点
  6. 孩子节点或子节点:一个节点含有的子树的根节点称为该节点的子节点
  7. 兄弟节点:具有相同父节点的节点称为兄弟节点
  8. 节点的层次:从根开始定义起,根为第1层,根的子节点为第2层,以此类推
  9. 深度:对于任意节点n, n的深度为从根到n的唯一路径长,根的深度为0
  10. 高度:对于任意节点n, n的高度为从n到一片树叶的最长路径长,所有树叶的高度为0
  11. 堂兄弟节点:父节点在同一层的节点互为堂兄弟
  12. 节点的祖先:以某节点为根的子树中任一节点都称为该节点的子树
  13. 子孙:以某节点为根的子树中任一节点都称为该节点的子孙
  14. 森林:由m(m>=0)棵互不相交的树集合称为森林
  15. 树中任意节点的子节点之间没有顺序关系,这种树称为无序树,也称为自由树,反之是有序树

二叉树的概念

二叉树的定义:

一颗二叉树是结点的一个有限集合,该集合或者为空,或者是由一个根结点加上两棵树分别称为左子树和右子树的、互不相交的二叉树组成

二叉树的性质:

  • 若二叉树的层次从0开始,则在二叉树的第i层最多由 2i 个结点(i>=0)
  • 高度为k的二叉树最多由2k+1-1个结点(k>=-1)
  • 对任何一颗二叉树,如果其叶结点个数为n0,度为2的非叶节点个数为n2,则有n0 = n2 + 1;
  • 满二叉树:每一个层的结点数都达到最大值,则这个树就是满二叉树
    在这里插入图片描述
  • 完全二叉树:若设二叉树的高度为h,则共有h+1层,除第h层外,其他各层(0~h-1)的结点数都达到最大个数,第h层从右向左连续缺若干结点,这就是完全二叉树
    在这里插入图片描述

存储表示

  • 数据元素之间的关系有两种不同的表示方法:顺序映像和非顺序映像,并由此得到两种不同的存储结构:顺序存储结构链式存储结构,数据的存储结构是指数据的逻辑结构在计算机中的表示
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述

代码实现

结构定义

typedef char ElemType;
typedef struct BtNode
{
	ElemType data;
	struct BtNode* leftchild;
	struct BtNode* rightchild;
}BtNode, * BinaryTree;

遍历方式

void PreOrder(BtNode* p)  //先序遍历
{
	if (p != nullptr)
	{
		cout << p->data << " ";
		PreOrder(p->leftchild);   //遍历左孩子
		PreOrder(p->rightchild);  //遍历右孩子
	}
}
void InOrder(BtNode* p)   //中序遍历
{
	if (p != nullptr)
	{
		InOrder(p->leftchild);   //遍历左孩子
		cout << p->data << " ";
		InOrder(p->rightchild);  //遍历右孩子
	}
}
void PastOrder(BtNode* p) //后续遍历
{
	if (p != nullptr)
	{
		PastOrder(p->leftchild);   //遍历左孩子
		PastOrder(p->rightchild);  //遍历右孩子
		cout << p->data << " ";
	}
}

二叉树创建

BtNode* Buynode()
{
	BtNode* s = (BtNode*)malloc(sizeof(BtNode));
	if (s == nullptr) exit(1);
	memset(s, 0, sizeof(BtNode));
	return s;
}
BtNode* CBTree1() 
{
	BtNode* s = nullptr;
	ElemType elem;
	cin >> elem;
	if (elem != '#')
	{
		s = Buynode();
		s->data = elem;
		s->leftchild = CBTree1();
		s->rightchild = CBTree1();
	}
	return s;
}

运行验证

int main()
{
	BinaryTree root = CBTree1();
	PreOrder(root);
	cout << endl;
	InOrder(root);
	cout << endl;
	PastOrder(root);
	cout << endl;

	return 0;
}

在这里插入图片描述

  • 通过先序遍历,与中序遍历来创建二叉树
int FindIs(const char* is, int n, char ch)
{
	int pos = -1;
	for (int i = 0; i < n; ++i)
	{
		if (is[i] == ch)
		{
			pos = i;
			break;
		}
	}
	return pos;
}
BtNode* CreatePI(const char* ps, const char* is, int n)
{
	BtNode* s = nullptr;
	if (n >= 1)
	{
		s = Buynode();
		s->data = ps[0]; //先序0下标
		int pos = FindIs(is, n, ps[0]);
		if (pos == -1) exit(1);
		s->leftchild = CreatePI(ps + 1, is, pos);
		s->rightchild = CreatePI(ps + pos + 1, is + pos + 1, n - pos - 1);	
	}
	return s;
}
BtNode* CreateBinartTreePI(const char* ps, const char* is, int n)
{
	if (ps == nullptr || is == nullptr || n <= 0) return NULL;
	else return CreatePI(ps, is, n);

}
int main()
{
	char ps[] = { "ABCDEFGH" };
	char is[] = { "CBEDFAGH" };
	char ls[] = { "CEFDBHGA" };
	int n = strlen(ps);
	BinaryTree root = nullptr;
	root = CreateBinartTreePI(ps, is, n);

	PreOrder(root);
	cout << endl;
	InOrder(root);
	cout << endl;
	PastOrder(root);
	cout << endl;
	return 0;
}

在这里插入图片描述

  • 通过中序遍历,与后续遍历创建二叉树

代码与上面基本相似

int FindIs(const char* is, int n, char ch)
{
	int pos = -1;
	for (int i = 0; i < n; ++i)
	{
		if (is[i] == ch)
		{
			pos = i;
			break;
		}
	}
	return pos;
}
BtNode* CreateIL(const char* is, const char* ls, int n)
{
	BtNode* s = NULL;
	if (n > 0)
	{
		s = Buynode();
		s->data = ls[n - 1];
		int pos = FindIs(is, n, ls[n - 1]);
		if (pos == -1) exit(1);
		s->leftchild = CreateIL(is,ls,pos);
		s->rightchild = CreateIL(is + pos + 1, ls + pos, n - pos - 1);;
	}
	return s;
}
BtNode* CreateBinartTreeIL(const char* is, const char* ls, int n)
{
	if (is == NULL || ls == NULL || n <= 0) return nullptr;
	else return CreateIL(is, ls, n);
}
int main()
{
	char ps[] = { "ABCDEFGH" };
	char is[] = { "CBEDFAGH" };
	char ls[] = { "CEFDBHGA" };
	int n = strlen(ps);
	BinaryTree root = nullptr;
	
	root = CreateBinartTreeIL(is, ls, n); //中序后续 创建二叉树

	PreOrder(root);
	cout << endl;
	InOrder(root);
	cout << endl;
	PastOrder(root);
	cout << endl;
	return 0;
}

非递归实现中序遍历

void NiceInOrder(BtNode* ptr) //非递归中序遍历
{
	if(ptr == nullptr) return;
	std::stack<BtNode*> st;

	while (ptr != nullptr || !st.empty())
	{
		while (ptr != NULL)
		{
			st.push(ptr);
			ptr = ptr->leftchild;
		}
		ptr = st.top(); st.pop();
		cout << ptr->data;
		ptr = ptr->rightchild;
	}
	cout << endl;
}

在这里插入图片描述

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值