BST树的定义
BST树又称为:二叉排序树,二叉搜索树
- 二叉搜索树或者是一颗空树,或者是具有下列性质的二叉树
- 每个结点都有一个作为搜索依据的关键码(key),所有结点的关键码互不相同
- 左子树(如果存在)上所有结点的关键码都小于根节点的关键码
- 右子树(如果存在)上所有结点的关键码都大于根节点的关键码
- 左子树和右子树也是二叉搜索树
总结:如果对一颗二叉搜索树进行中序遍历,可以按从小到大的顺序,将各结点的关键码排列起来,所以也称为二叉搜索树为二叉排序树
与大根堆与小根堆是完全不同的
BST树结构
typedef int KeyType;
typedef struct BstNode
{
KeyType key;
BstNode* leftchild;
BstNode* parent;
BstNode* rightchild;
}BstNode,* BstTree;
BST树的创建
typedef int KeyType;
typedef struct BstNode
{
KeyType key;
BstNode* leftchild;
BstNode* parent;
BstNode* rightchild;
}BstNode,* BstTree;
BstNode* Buynode()
{
BstNode* s = (BstNode*)malloc(sizeof(BstNode));
if (s == NULL) exit(1);
memset(s, 0, sizeof(BstNode));
return s;
}
BstNode* MakeRoot(KeyType kx)
{
BstNode* s = Buynode();
s->key = kx;
return s;
}
bool Insert(BstNode*& ptr, KeyType kx)
{
if (ptr == nullptr)
{
ptr = MakeRoot(kx);
return true;
}
BstNode* pa = nullptr;
BstNode* p = ptr;
while (p != nullptr && p->key != kx)
{
pa = p;
p = kx < p->key ? p->leftchild : p->rightchild; //寻找合适位置
}
if (p != nullptr && p->key == kx) return false;//值相同
p = Buynode();
p->key = kx;
p->parent = pa;
if (p->key < pa->key)
{
pa->leftchild = p;
}
else
{
pa->rightchild = p;
}
return true;
}
void InOrder(BstNode* ptr)
{
if (ptr != nullptr)
{
InOrder(ptr->leftchild);
cout << ptr->key << " ";
InOrder(ptr->rightchild);
}
}
int main()
{
BstTree root = nullptr;
int ar[] = { 53,17,78,9,45,65,87,23,81,94,88,100 };
int n = sizeof(ar) / sizeof(ar[0]);
for (int i = 0; i < n; ++i)
{
cout << Insert(root, ar[i]) << endl;
}
InOrder(root);
return 0;
}
对BST树进行中序遍历,可得到排好序的数组
递归中序遍历
void InOrder(BstNode* ptr)
{
if (ptr != nullptr)
{
InOrder(ptr->leftchild);
cout << ptr->key << " ";
InOrder(ptr->rightchild);
}
}
非递归中序遍历
BstNode* First(BstNode* ptr) //找到最小结点
{
while (ptr != nullptr && ptr->leftchild != nullptr)
{
ptr = ptr->leftchild;
}
return ptr;
}
BstNode* Next(BstNode* ptr) //寻找下一结点
{
if (ptr == nullptr) return nullptr;
if (ptr->rightchild != nullptr)
{
return First(ptr->rightchild);
}
else
{
BstNode* pa = ptr->parent;
while (pa != nullptr && pa->leftchild != ptr)
{
ptr = pa;
pa = ptr->parent;
}
return pa;
}
}
void NiceInOrder(BstNode* ptr)
{
for (BstNode* p = First(ptr); p != nullptr; p = Next(p)) //直接进行遍历
{
cout << p->key << " ";
}
cout << endl;
}
逆向非递归中序遍历
BstNode* Last(BstNode* ptr)
{
while (ptr != nullptr && ptr->rightchild != nullptr)
{
ptr = ptr->rightchild;
}
return ptr;
}
BstNode* Prev(BstNode* ptr)
{
if (ptr == nullptr) return nullptr;
if (ptr->rightchild != nullptr)
{
return Last(ptr->leftchild);
}
else
{
BstNode* pa = ptr->parent;
while (pa != nullptr && pa->rightchild != ptr)
{
ptr = pa;
pa = ptr->parent;
}
return pa;
}
}
void RevNiceInOrder(BstNode* ptr)
{
for (BstNode* p = Last(ptr); p != nullptr; p = Prev(p))
{
cout << p->key << " ";
}
cout << endl;
}
int main()
{
BstTree root = nullptr;
int ar[] = { 53,17,78,9,45,65,87,23,81,94,88,100 };
int n = sizeof(ar) / sizeof(ar[0]);
for (int i = 0; i < n; ++i)
{
cout << Insert(root, ar[i]) << endl;
}
//NiceInOrder(root);
RevNiceInOrder(root);
return 0;
}
根据前面非递归中序遍历进行小修改就可以得到逆向的中序遍历
删除结点
bool Remove(BstNode*& ptr, KeyType kx)
{
if (ptr == nullptr) return false;
BstNode* pa = nullptr;
BstNode* p = ptr;
while (p!= nullptr && p->key!=kx) //寻找该结点
{
p = kx < p->key ? p->leftchild : p->rightchild;
}
if (p == nullptr) return false;
//当需要删除的结点为双分支的时候
if (p->leftchild != nullptr && p->rightchild != nullptr)
{
BstNode* q = First(p->rightchild); //将其替换为直接后继
p->key = q->key; //数值替换
p = q;
}
pa = p->parent;
//处理单分支
BstNode* child = p->leftchild != nullptr ? p->leftchild : p->rightchild;
if (child != nullptr) child->parent = pa; //将子节点的父节点指向自己的父节点
//处理叶子结点
if (pa == nullptr) //删除的是根节点
{
ptr == child;
}
else
{
if (pa->leftchild == p) //删除直接后继或前驱
{
pa->leftchild == child; //如果p为叶子结点,则其子child必定为nullptr
}
else
{
pa->rightchild == child;
}
}
free(p);
return true;
}
当我们需要删除一个结点的时候,将该结点于其直接后继交换,将其直接后继进行删除
并根据其直接后继为单分支、双分支或叶节点分别采取不同的替换方式