堆的应用
堆排序
堆排序(Heapsort)是指利用堆积树(堆)这种数据结构所设计的一种排序算法,它是选择排序的一种。它是通过堆来进行选择数据。需要注意的是排升序要建大堆,排降序建小堆。
利用堆删除的思想来进行排序。以升序为例,建立大根堆后,交换堆顶和堆末尾的数据并减少堆的长队,再利用向下调整算法重新建立堆。这样最大的数据就成功到数组末尾了。
HeapSort
的代码:
void HeapSort(int* a, int n)
{
//升序建大堆,降序建小堆
//向下建堆效率高
for (int i = (n - 1 - 1) / 2; i >= 0; i--)
{
AdjustDown(a, n, i);
}
int end = n - 1;
while (end > 0)
{
Swap(&a[0], &a[end]);
AdjustDown(a, end, 0);
end--;
}
}
堆排序使用堆来选数,效率较高。
时间复杂度:O(N*logN);
空间复杂度:O(1)
稳定性:不稳定
TOP-K问题
TOP-K问题:即求数据结合中前K个最大的元素或者最小的元素,一般情况下数据量N都比较大,而K相对较小。
对于Top-K问题,能想到的最简单直接的方式就是排序,但是:如果数据量非常大,排序就不太可取了(可能数据都不能一下子全部加载到内存中)。最佳的方式就是用堆来解决,基本思路如下:
- 用数据集合中前K个元素来建堆。要求前k个最大的元素,则建小堆;前k个最小的元素,则建大堆
- 用剩余的N-K个元素依次与堆顶元素来比较,不满足则替换堆顶元素(这样需要开辟的数组大小仅仅是K了,节省了空间)
将剩余N-K个元素依次与堆顶元素比完之后,堆中剩余的K个元素就是所求的前K个最小或者最大的元素。
TOP-K问题代码:
void PrintTopK(int* a, int n, int k)
{
//找大数建小堆
//建堆 用a中前k个元素建堆
int* kMinHeap = (int*)malloc(sizeof(int) * k);
if (kMinHeap == NULL)
{
printf("malloc fail\n");
exit(-1);
}
for (int i = 0; i < k; i++)
{
kMinHeap[i] = a[i];
}
for (int i = (k - 1 - 1) / 2; i >= 0; i--)
{
AdjustDown(kMinHeap, k, 0);
}
//将剩余n-k个元素一次与堆顶元素交换,不满则替换
for (int j = k; j < n; j++)
{
if (a[j] > kMinHeap[0])
{
kMinHeap[0] = a[j];
AdjustDown(kMinHeap, k, 0);
}
}
for (int j = 0; j < k; j++)
{
printf("%d ", kMinHeap[j]);
}
printf("\n");
}