堆的应用:堆排序和TOP-K问题

堆的应用

堆排序

堆排序(Heapsort)是指利用堆积树(堆)这种数据结构所设计的一种排序算法,它是选择排序的一种。它是通过堆来进行选择数据。需要注意的是排升序要建大堆,排降序建小堆

利用堆删除的思想来进行排序。以升序为例,建立大根堆后,交换堆顶和堆末尾的数据并减少堆的长队,再利用向下调整算法重新建立堆。这样最大的数据就成功到数组末尾了。
在这里插入图片描述

HeapSort的代码:

void HeapSort(int* a, int n)
{
	//升序建大堆,降序建小堆
	//向下建堆效率高
	for (int i = (n - 1 - 1) / 2; i >= 0; i--)
	{
		AdjustDown(a, n, i);
	}

	int end = n - 1;
	while (end > 0)
	{
		Swap(&a[0], &a[end]);
		AdjustDown(a, end, 0);
		end--;
	}
}

堆排序使用堆来选数,效率较高。
时间复杂度:O(N*logN);
空间复杂度:O(1)
稳定性:不稳定

TOP-K问题

TOP-K问题:即求数据结合中前K个最大的元素或者最小的元素,一般情况下数据量N都比较大,而K相对较小

对于Top-K问题,能想到的最简单直接的方式就是排序,但是:如果数据量非常大,排序就不太可取了(可能数据都不能一下子全部加载到内存中)。最佳的方式就是用堆来解决,基本思路如下:

  1. 用数据集合中前K个元素来建堆。要求前k个最大的元素,则建小堆;前k个最小的元素,则建大堆
  2. 用剩余的N-K个元素依次与堆顶元素来比较,不满足则替换堆顶元素(这样需要开辟的数组大小仅仅是K了,节省了空间)

将剩余N-K个元素依次与堆顶元素比完之后,堆中剩余的K个元素就是所求的前K个最小或者最大的元素。

TOP-K问题代码:

void PrintTopK(int* a, int n, int k)
{
	//找大数建小堆
	//建堆 用a中前k个元素建堆
	int* kMinHeap = (int*)malloc(sizeof(int) * k);
	if (kMinHeap == NULL)
	{
		printf("malloc fail\n");
		exit(-1);
	}
	for (int i = 0; i < k; i++)
	{
		kMinHeap[i] = a[i];
	}
	for (int i = (k - 1 - 1) / 2; i >= 0; i--)
	{
		AdjustDown(kMinHeap, k, 0);
	}

	//将剩余n-k个元素一次与堆顶元素交换,不满则替换
	for (int j = k; j < n; j++)
	{
		if (a[j] > kMinHeap[0])
		{
			kMinHeap[0] = a[j];
			AdjustDown(kMinHeap, k, 0);
		}
	}

	for (int j = 0; j < k; j++)
	{
		printf("%d ", kMinHeap[j]);
	}
	printf("\n");
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

underratedtang

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值