一篇带你学习 Kubernetes Descheduler 使用

我们可以去手动做一些集群的平衡,比如手动去删掉某些 Pod,触发重新调度就可以了,但是显然这是一个繁琐的过程,也不是解决问题的方式。为了解决实际运行中集群资源无法充分利用或浪费的问题,可以使用 Descheduler 组件对集群的 Pod 进行调度优化。

从 kube-scheduler 的角度来看,它是通过一系列算法计算出最佳节点运行 Pod,当出现新的 Pod 进行调度时,调度程序会根据其当时对 Kubernetes 集群的资源描述做出最佳调度决定,但是 Kubernetes 集群是非常动态的,由于整个集群范围内的变化,比如一个节点为了维护,我们先执行了驱逐操作,这个节点上的所有 Pod 会被驱逐到其他节点去,但是当我们维护完成后,之前的 Pod 并不会自动回到该节点上来,因为 Pod 一旦被绑定了节点是不会触发重新调度的,由于这些变化,Kubernetes 集群在一段时间内就可能会出现不均衡的状态,所以需要均衡器来重新平衡集群。

当然我们可以去手动做一些集群的平衡,比如手动去删掉某些 Pod,触发重新调度就可以了,但是显然这是一个繁琐的过程,也不是解决问题的方式。为了解决实际运行中集群资源无法充分利用或浪费的问题,可以使用 descheduler 组件对集群的 Pod 进行调度优化,descheduler 可以根据一些规则和配置策略来帮助我们重新平衡集群状态,其核心原理是根据其策略配置找到可以被移除的 Pod 并驱逐它们,其本身并不会进行调度被驱逐的 Pod,而是依靠默认的调度器来实现,目前支持的策略有:

  • RemoveDuplicates
  • LowNodeUtilization
  • HighNodeUtilization
  • RemovePodsViolatingInterPodAntiAffinity
  • RemovePodsViolatingNodeAffinity
  • RemovePodsViolatingNodeTaints
  • RemovePodsViolatingTopologySpreadConstraint
  • RemovePodsHavingTooManyRestarts
  • PodLifeTime
  • RemoveFailedPods

这些策略都是可以启用或者禁用的,作为策略的一部分,也可以配置与策略相关的一些参数,默认情况下,所有策略都是启用的。另外,还有一些通用配置,如下:

  • nodeSelector:限制要处理的节点
  • evictLocalStoragePods: 驱逐使用 LocalStorage 的 Pods
  • ignorePvcPods: 是否忽略配置 PVC 的 Pods,默认是 False
  • maxNoOfPodsToEvictPerNode:节点允许的最大驱逐 Pods 数

我们可以通过如下所示的 DeschedulerPolicy 来配置:

复制

apiVersion: "descheduler/v1alpha2"
kind: "DeschedulerPolicy"
nodeSelector: "node=node1" # 如果没有设置,所有内容都将被处理,无需进行此设置。
maxNoOfPodsToEvictPerNode: 5000 # 如果没有设置,就不需要进行限制。
maxNoOfPodsToEvictPerNamespace: 5000
profiles:
  - name: ProfileName
    pluginConfig:
    - name: "DefaultEvictor"
      args:
        evictSystemCriticalPods: true
        evictFailedBarePods: true
        evictLocalStoragePods: true
        nodeFit: true
    plugins:
      evict:
        enabled:
          - "DefaultEvictor"
      deschedule:
        enabled:
          - ...
      balance:
        enabled:
          - ...
      [...]

安装

descheduler 可以以 CronJob 或者 Deployment 的形式运行在 k8s 集群内,同样我们可以使用 Helm Chart 来安装 descheduler:

复制

➜ helm repo add descheduler https://kubernetes-sigs.github.io/descheduler/

通过 Helm Chart 我们可以配置 descheduler 以 CronJob 或者 Deployment 方式运行,默认情况下 descheduler 会以一个 critical pod 运行,以避免被自己或者 kubelet 驱逐了,需要确保集群中有 system-cluster-critical 这个 Priorityclass:

复制

➜ kubectl get priorityclass system-cluster-critical
NAME                      VALUE        GLOBAL-DEFAULT   AGE
system-cluster-critical   2000000000   false            87d

使用 Helm Chart 安装默认情况下会以 CronJob 的形式运行,执行周期为 schedule: "*/2 * * * *",这样每隔两分钟会执行一次 descheduler 任务,默认的配置策略如下所示:

复制

apiVersion: v1
kind: ConfigMap
metadata:
  name: descheduler
data:
  policy.yaml: |
    apiVersion: "descheduler/v1alpha1"
    kind: "DeschedulerPolicy"
    strategies:
      LowNodeUtilization:
        enabled: true
        params:
          nodeResourceUtilizationThresholds:
            targetThresholds:
              cpu: 50
              memory: 50
              pods: 50
            thresholds:
              cpu: 20
              memory: 20
              pods: 20
      RemoveDuplicates:
        enabled: true
      RemovePodsHavingTooManyRestarts:
        enabled: true
        params:
          podsHavingTooManyRestarts:
            includingInitContainers: true
            podRestartThreshold: 100
      RemovePodsViolatingInterPodAntiAffinity:
        enabled: true
      RemovePodsViolatingNodeAffinity:
        enabled: true
        params:
          nodeAffinityType:
          - requiredDuringSchedulingIgnoredDuringExecution
      RemovePodsViolatingNodeTaints:
        enabled: true
      RemovePodsViolatingTopologySpreadConstraint:
        enabled: true
        params:
          includeSoftConstraints: false

通过配置 DeschedulerPolicy 的 strategies,可以指定 descheduler 的执行策略,这些策略都是可以启用或禁用的,下面我们会详细介绍,这里我们使用默认策略即可,使用如下命令直接安装即可:

复制

➜ helm upgrade --install descheduler descheduler/descheduler --set image.repository=cnych/descheduler -n kube-system

部署完成后会创建一个 CronJob 资源对象来平衡集群状态:

复制

➜ kubectl get cronjob -n kube-system
NAME          SCHEDULE      SUSPEND   ACTIVE   LAST SCHEDULE   AGE
descheduler   */2 * * * *   False     1        8s              117s
➜ kubectl get job -n kube-system
NAME                   COMPLETIONS   DURATION   AGE
descheduler-28032982   1/1           15s        17s
➜ kubectl get pods -n kube-system -l job-name=descheduler-28032982
NAME                         READY   STATUS      RESTARTS   AGE
descheduler-28032982-vxn24   0/1     Completed   0          31s

正常情况下就会创建一个对应的 Job 来执行 descheduler 任务,我们可以通过查看日志可以了解做了哪些平衡操作:

复制

➜ kubectl logs -f descheduler-28032982-vxn24 -nkube-system
I0420 08:22:10.019936       1 named_certificates.go:53] "Loaded SNI cert" index=0 certName="self-signed loopback" certDetail="\"apiserver-loopback-client@1681978930\" [serving] validServingFor=[apiserver-loopback-client] issuer=\"apiserver-loopback-client-ca@1681978929\" (2023-04-20 07:22:09 +0000 UTC to 2024-04-19 07:22:09 +0000 UTC (now=2023-04-20 08:22:10.019885292 +0000 UTC))"
I0420 08:22:10.020138       1 secure_serving.go:210] Serving securely on [::]:10258
I0420 08:22:10.020301       1 tlsconfig.go:240] "Starting DynamicServingCertificateController"
I0420 08:22:10.021237       1 policyconfig.go:211] converting Deschedule plugin: %sRemovePodsViolatingInterPodAntiAffinity
I0420 08:22:10.021255       1 policyconfig.go:211] converting Deschedule plugin: %sRemovePodsViolatingNodeAffinity
I0420 08:22:10.021262       1 policyconfig.go:211] converting Deschedule plugin: %sRemovePodsViolatingNodeTaints
I0420 08:22:10.021269       1 policyconfig.go:202] converting Balance plugin: %sRemovePodsViolatingTopologySpreadConstraint
I0420 08:22:10.021280       1 policyconfig.go:202] converting Balance plugin: %sLowNodeUtilization
I0420 08:22:10.021296       1 policyconfig.go:202] converting Balance plugin: %sRemoveDuplicates
I0420 08:22:10.021312       1 policyconfig.go:211] converting Deschedule plugin: %sRemovePodsHavingTooManyRestarts
# ......
I0420 08:22:11.630980       1 removeduplicates.go:162] "Duplicate found" pod="kruise-system/kruise-controller-manager-7d78fc5c97-pxsqx"
I0420 08:22:11.630997       1 removeduplicates.go:103] "Processing node" node="node2"
I0420 08:22:11.631052       1 removeduplicates.go:103] "Processing node" node="node3"
I0420 08:22:11.631113       1 removeduplicates.go:103] "Processing node" node="master1"
I0420 08:22:11.631184       1 removeduplicates.go:194] "Adjusting feasible nodes" owner={namespace:kruise-system kind:ReplicaSet name:kruise-controller-manager-7d78fc5c97 imagesHash:openkruise/kruise-manager:v1.3.0} from=4 to=3
I0420 08:22:11.631200       1 removeduplicates.go:203] "Average occurrence per node" node="node1" ownerKey={namespace:kruise-system kind:ReplicaSet name:kruise-controller-manager-7d78fc5c97 imagesHash:openkruise/kruise-manager:v1.3.0} avg=1
I0420 08:22:11.647438       1 evictions.go:162] "Evicted pod" pod="kruise-system/kruise-controller-manager-7d78fc5c97-pxsqx" reasnotallow="" strategy="RemoveDuplicates" node="node1"
I0420 08:22:11.647494       1 descheduler.go:408] "Number of evicted pods" totalEvicted=1
I0420 08:22:11.647583       1 reflector.go:227] Stopping reflector *v1.Namespace (0s) from k8s.io/client-go/informers/factory.go:150
I0420 08:22:11.647702       1 reflector.go:227] Stopping reflector *v1.PriorityClass (0s) from k8s.io/client-go/informers/factory.go:150
I0420 08:22:11.647761       1 tlsconfig.go:255] "Shutting down DynamicServingCertificateController"
I0420 08:22:11.647764       1 reflector.go:227] Stopping reflector *v1.Node (0s) from k8s.io/client-go/informers/factory.go:150
I0420 08:22:11.647811       1 secure_serving.go:255] Stopped listening on [::]:10258
......

从日志中我们就可以清晰的知道因为什么策略驱逐了哪些 Pods。

PDB

由于使用 descheduler 会将 Pod 驱逐进行重调度,但是如果一个服务的所有副本都被驱逐的话,则可能导致该服务不可用。如果服务本身存在单点故障,驱逐的时候肯定就会造成服务不可用了,这种情况我们强烈建议使用反亲和性和多副本来避免单点故障,但是如果服务本身就被打散在多个节点上,这些 Pod 都被驱逐的话,这个时候也会造成服务不可用了,这种情况下我们可以通过配置 PDB(PodDisruptionBudget) 对象来避免所有副本同时被删除,比如我们可以设置在驱逐的时候某应用最多只有一个副本不可用,则创建如下所示的资源清单即可:

复制

# pdb-demo.yaml
apiVersion: policy/v1
kind: PodDisruptionBudget
metadata:
  name: pdb-demo
spec:
  maxUnavailable: 1 # 设置最多不可用的副本数量,或者使用 minAvailable,可以使用整数或百分比
  selector:
    matchLabels: # 匹配Pod标签
      app: demo

关于 PDB 的更多详细信息可以查看官方文档:https://kubernetes.io/docs/tasks/run-application/configure-pdb/。

所以如果我们使用 descheduler 来重新平衡集群状态,那么我们强烈建议给应用创建一个对应的 PodDisruptionBudget 对象进行保护。

策略

PodLifeTime:驱逐超过指定时间限制的 pod

该策略用于驱逐比 maxPodLifeTimeSeconds 更旧的 Pods,可以通过 podStatusPhases 来配置哪类状态的 Pods 会被驱逐,建议为每个应用程序创建一个 PDB,以确保应用程序的可用性,比如我们可以配置如下所示的策略来驱逐运行超过 7 天的 Pod:

复制

apiVersion: "descheduler/v1alpha1"
kind: "DeschedulerPolicy"
strategies:
  "PodLifeTime":
    enabled: true
    params:
      maxPodLifeTimeSeconds: 604800 # Pods 运行最多7天

RemoveDuplicates

该策略确保只有一个和 Pod 关联的 RS、Deployment 或者 Job 资源对象运行在同一节点上。如果还有更多的 Pod 则将这些重复的 Pod 进行驱逐,以便更好地在集群中分散 Pod。如果某些节点由于某些原因崩溃了,这些节点上的 Pod 漂移到了其他节点,导致多个与 RS 关联的 Pod 在同一个节点上运行,就有可能发生这种情况,一旦出现故障的节点再次准备就绪,就可以启用该策略来驱逐这些重复的 Pod。

配置策略的时候,可以指定参数 excludeOwnerKinds 用于排除类型,这些类型下的 Pod 不会被驱逐:

复制

apiVersion: "descheduler/v1alpha1"
kind: "DeschedulerPolicy"
strategies:
  "RemoveDuplicates":
    enabled: true
    params:
      removeDuplicates:
        excludeOwnerKinds:
          - "ReplicaSet"

LowNodeUtilization

该策略主要用于查找未充分利用的节点,并从其他节点驱逐 Pod,以便 kube-scheduler 重新将它们调度到未充分利用的节点上。该策略的参数可以通过字段 nodeResourceUtilizationThresholds 进行配置。

节点的利用率不足可以通过配置 thresholds 阈值参数来确定,可以通过 CPU、内存和 Pods 数量的百分比进行配置。如果节点的使用率均低于所有阈值,则认为该节点未充分利用。

此外,还有一个可配置的阈值 targetThresholds,用于计算可能驱逐 Pods 的潜在节点,该参数也可以配置 CPU、内存以及 Pods 数量的百分比进行配置。thresholds 和 targetThresholds 可以根据你的集群需求进行动态调整,如下所示示例:

复制

apiVersion: "descheduler/v1alpha1"
kind: "DeschedulerPolicy"
strategies:
  "LowNodeUtilization":
    enabled: true
    params:
      nodeResourceUtilizationThresholds:
        thresholds:
          "cpu": 20
          "memory": 20
          "pods": 20
        targetThresholds:
          "cpu": 50
          "memory": 50
          "pods": 50

需要注意的是:

  • 仅支持以下三种资源类型:cpu、memory、pods
  • thresholds 和 targetThresholds 必须配置相同的类型
  • 参数值的访问是 0-100(百分制)
  • 相同的资源类型,thresholds 的配置不能高于 targetThresholds 的配置

如果未指定任何资源类型,则默认是 100%,以避免节点从未充分利用变为过度利用。和 LowNodeUtilization 策略关联的另一个参数是 numberOfNodes,只有当未充分利用的节点数大于该配置值的时候,才可以配置该参数来激活该策略,该参数对于大型集群非常有用,其中有一些节点可能会频繁使用或短期使用不足,默认情况下,numberOfNodes 为 0。

RemovePodsViolatingInterPodAntiAffinity

该策略可以确保从节点中删除违反 Pod 反亲和性的 Pod,比如某个节点上有 podA 这个 Pod,并且 podB 和 podC(在同一个节点上运行)具有禁止它们在同一个节点上运行的反亲和性规则,则 podA 将被从该节点上驱逐,以便 podB 和 podC 运行正常运行。当 podB 和 podC 已经运行在节点上后,反亲和性规则被创建就会发送这样的问题。

要禁用该策略,直接配置成 false 即可:

复制

apiVersion: "descheduler/v1alpha1"
kind: "DeschedulerPolicy"
strategies:
  "RemovePodsViolatingInterPodAntiAffinity":
    enabled: false

RemovePodsViolatingNodeTaints

该策略可以确保从节点中删除违反 NoSchedule 污点的 Pod,比如有一个名为 podA 的 Pod,通过配置容忍 key=value:NoSchedule 允许被调度到有该污点配置的节点上,如果节点的污点随后被更新或者删除了,则污点将不再被 Pods 的容忍满足,然后将被驱逐:

复制

apiVersion: "descheduler/v1alpha1"
kind: "DeschedulerPolicy"
strategies:
  "RemovePodsViolatingNodeTaints":
    enabled: true

RemovePodsViolatingNodeAffinity

该策略确保从节点中删除违反节点亲和性的 Pod。比如名为 podA 的 Pod 被调度到了节点 nodeA,podA 在调度的时候满足了节点亲和性规则 requiredDuringSchedulingIgnoredDuringExecution,但是随着时间的推移,节点 nodeA 不再满足该规则了,那么如果另一个满足节点亲和性规则的节点 nodeB 可用,则 podA 将被从节点 nodeA 驱逐,如下所示的策略配置示例:

复制

apiVersion: "descheduler/v1alpha1"
kind: "DeschedulerPolicy"
strategies:
  "RemovePodsViolatingNodeAffinity":
    enabled: true
    params:
      nodeAffinityType:
        - "requiredDuringSchedulingIgnoredDuringExecution"

RemovePodsViolatingTopologySpreadConstraint

该策略确保从节点驱逐违反拓扑分布约束的 Pods,具体来说,它试图驱逐将拓扑域平衡到每个约束的 ​​maxSkew​​ 内所需的最小 Pod 数,不过该策略需要 k8s 版本高于 1.18 才能使用。

默认情况下,此策略仅处理硬约束,如果将参数 ​​includeSoftConstraints​​ 设置为 True,也将支持软约束。

复制

apiVersion: "descheduler/v1alpha1"
kind: "DeschedulerPolicy"
strategies:
  "RemovePodsViolatingTopologySpreadConstraint":
    enabled: true
    params:
      includeSoftConstraints: false

RemovePodsHavingTooManyRestarts

该策略确保从节点中删除重启次数过多的 Pods,它的参数包括 podRestartThreshold(这是应将 Pod 逐出的重新启动次数),以及包括InitContainers,它确定在计算中是否应考虑初始化容器的重新启动,策略配置如下所示:

复制

apiVersion: "descheduler/v1alpha1"
kind: "DeschedulerPolicy"
strategies:
  "RemovePodsHavingTooManyRestarts":
    enabled: true
    params:
      podsHavingTooManyRestarts:
        podRestartThreshold: 100
        includingInitContainers: true

Filter Pods

在驱逐 Pods 的时候,有时并不需要所有 Pods 都被驱逐,descheduler 提供了两种主要的方式进行过滤:命名空间过滤和优先级过滤。

命名空间过滤

该策略可以配置是包含还是排除某些名称空间。可以使用该策略的有:

  • PodLifeTime
  • RemovePodsHavingTooManyRestarts
  • RemovePodsViolatingNodeTaints
  • RemovePodsViolatingNodeAffinity
  • RemovePodsViolatingInterPodAntiAffinity
  • RemoveDuplicates
  • RemovePodsViolatingTopologySpreadConstraint

比如只驱逐某些命令空间下的 Pods,则可以使用 include 参数进行配置,如下所示:

复制

apiVersion: "descheduler/v1alpha1"
kind: "DeschedulerPolicy"
strategies:
  "PodLifeTime":
    enabled: true
    params:
      podLifeTime:
        maxPodLifeTimeSeconds: 86400
      namespaces:
        include:
          - "namespace1"
          - "namespace2"

又或者要排除掉某些命令空间下的 Pods,则可以使用 exclude 参数配置,如下所示:

复制

apiVersion: "descheduler/v1alpha1"
kind: "DeschedulerPolicy"
strategies:
  "PodLifeTime":
    enabled: true
    params:
      podLifeTime:
        maxPodLifeTimeSeconds: 86400
      namespaces:
        exclude:
          - "namespace1"
          - "namespace2"

优先级过滤

所有策略都可以配置优先级阈值,只有在该阈值以下的 Pod 才会被驱逐,我们可以通过设置 thresholdPriorityClassName(将阈值设置为指定优先级类别的值)或 thresholdPriority(直接设置阈值)参数来指定该阈值。默认情况下,该阈值设置为 system-cluster-critical 这个 PriorityClass 类的值。

比如使用 thresholdPriority:

复制

apiVersion: "descheduler/v1alpha1"
kind: "DeschedulerPolicy"
strategies:
  "PodLifeTime":
    enabled: true
    params:
      podLifeTime:
        maxPodLifeTimeSeconds: 86400
      thresholdPriority: 10000

或者使用 thresholdPriorityClassName 进行过滤:

复制

apiVersion: "descheduler/v1alpha1"
kind: "DeschedulerPolicy"
strategies:
  "PodLifeTime":
    enabled: true
    params:
      podLifeTime:
        maxPodLifeTimeSeconds: 86400
      thresholdPriorityClassName: "priorityclass1"

不过需要注意不能同时配置 thresholdPriority 和 thresholdPriorityClassName,如果指定的优先级类不存在,则 descheduler 不会创建它,并且会引发错误。

注意事项

当使用 descheduler 驱除 Pods 的时候,需要注意以下几点:

  • 关键性 Pod 不会被驱逐,比如 priorityClassName 设置为 system-cluster-critical 或 system-node-critical 的 Pod。
  • 不属于 RS、Deployment 或 Job 管理的 Pods 不会被驱逐。
  • DaemonSet 创建的 Pods 不会被驱逐。
  • 使用 LocalStorage 的 Pod 不会被驱逐,除非设置 evictLocalStoragePods: true。
  • 具有 PVC 的 Pods 不会被驱逐,除非设置 ignorePvcPods: true。
  • 在 LowNodeUtilization 和 RemovePodsViolatingInterPodAntiAffinity 策略下,Pods 按优先级从低到高进行驱逐,如果优先级相同,Besteffort 类型的 Pod 要先于 Burstable 和 Guaranteed 类型被驱逐。
  • annotations 中带有 descheduler.alpha.kubernetes.io/evict 字段的 Pod 都可以被驱逐,该注释用于覆盖阻止驱逐的检查,用户可以选择驱逐哪个 Pods。
  • 如果 Pods 驱逐失败,可以设置 --v=4 从 descheduler 日志中查找原因,如果驱逐违反 PDB 约束,则不会驱逐这类 Pods。
微服务是什么?微服务是用于构建应用程序的架构风格,一个大的系统可由一个或者多个微服务组成,微服务架构可将应用拆分成多个核心功能,每个功能都被称为一项服务,可以单独构建和部署,这意味着各项服务在工作和出现故障的时候不会相互影响。为什么要用微服务?单体架构下的所有代码模块都耦合在一起,代码量大,维护困难,想要更新一个模块的代码,也可能会影响其他模块,不能很好的定制化代码。微服务中可以有java编写、有Python编写的,他们都是靠restful架构风格统一成一个系统的,所以微服务本身与具体技术无关、扩展性强。大型电商平台微服务功能图为什么要将SpringCloud项目部署到k8s平台?SpringCloud只能用在SpringBoot的java环境中,而kubernetes可以适用于任何开发语言,只要能被放进docker的应用,都可以在kubernetes上运行,而且更轻量,更简单。SpringCloud很多功能都跟kubernetes重合,比如服务发现,负载均衡,配置管理,所以如果把SpringCloud部署到k8s,那么很多功能可以直接使用k8s原生的,减少复杂度。Kubernetes作为成熟的容器编排工具,在国内外很多公司、世界500强等企业已经落地使用,很多中小型公司也开始把业务迁移到kubernetes中。kubernetes已经成为互联网行业急需的人才,很多企业都开始引进kubernetes技术人员,实现其内部的自动化容器云平台的建设。对于开发、测试、运维、架构师等技术人员来说k8s已经成为的一项重要的技能,下面列举了国内外在生产环境使用kubernetes的公司: 国内在用k8s的公司:阿里巴巴、百度、腾讯、京东、360、新浪、头条、知乎、华为、小米、富士康、移动、银行、电网、阿里云、青云、时速云、腾讯、优酷、抖音、快手、美团等国外在用k8s的公司:谷歌、IBM、丰田、iphone、微软、redhat等整个K8S体系涉及到的技术众多,包括存储、网络、安全、监控、日志、DevOps、微服务等,很多刚接触K8S的初学者,都会感到无从下手,为了能让大家系统地学习,克服这些技术难点,推出了这套K8S架构师课程。Kubernetes的发展前景 kubernetes作为炙手可热的技术,已经成为云计算领域获取高薪要掌握的重要技能,在招聘网站搜索k8s,薪资水平也非常可观,为了让大家能够了解k8s目前的薪资分布情况,下面列举一些K8S的招聘截图: 讲师介绍:  先超容器云架构师、IT技术架构师、DevOps工程师,曾就职于世界500强上市公司,拥有多年一线运维经验,主导过上亿流量的pv项目的架构设计和运维工作;具有丰富的在线教育经验,对课程一直在改进和提高、不断的更新和完善、开发更多的企业实战项目。所教学员遍布京东、阿里、百度、电网等大型企业和上市公司。课程学习计划 学习方式:视频录播+视频回放+全套源码笔记 教学服务:模拟面试、就业指导、岗位内推、一对一答疑、远程指导 VIP终身服务:一次购买,终身学习课程亮点:1. 学习方式灵活,不占用工作时间:可在电脑、手机观看,随时可以学习,不占用上班时间2.老师答疑及时:老师24小时在线答疑3. 知识点覆盖全、课程质量高4. 精益求精、不断改进根据学员要求、随时更新课程内容5. 适合范围广,不管你是0基础,还是拥有工作经验均可学习:0基础1-3年工作经验3-5年工作经验5年以上工作经验运维、开发、测试、产品、前端、架构师其他行业转行做技术人员均可学习课程部分项目截图   课程大纲 k8s+SpringCloud全栈技术:基于世界500强的企业实战课程-大纲第一章 开班仪式老师自我介绍、课程大纲介绍、行业背景、发展趋势、市场行情、课程优势、薪资水平、给大家的职业规划、课程学习计划、岗位内推第二章 kubernetes介绍Kubernetes简介kubernetes起源和发展kubernetes优点kubernetes功能kubernetes应用领域:在大数据、5G、区块链、DevOps、AI等领域的应用第三章  kubernetes中的资源对象最小调度单元Pod标签Label和标签选择器控制器Replicaset、Deployment、Statefulset、Daemonset等四层负载均衡器Service第四章 kubernetes架构和组件熟悉谷歌的Borg架构kubernetes单master节点架构kubernetes多master节点高可用架构kubernetes多层架构设计原理kubernetes API介绍master(控制)节点组件:apiserver、scheduler、controller-manager、etcdnode(工作)节点组件:kube-proxy、coredns、calico附加组件:prometheus、dashboard、metrics-server、efk、HPA、VPA、Descheduler、Flannel、cAdvisor、Ingress     Controller。第五章 部署多master节点的K8S高可用集群(kubeadm)第六章 你体验kubernetes可视化界面dashboard在kubernetes中部署dashboard通过token令牌登陆dashboard通过kubeconfig登陆dashboard限制dashboard的用户权限在dashboard界面部署Web服务在dashboard界面部署redis服务第七章 资源清单YAML文件编写技巧编写YAML文件常用字段,YAML文件编写技巧,kubectl explain查看帮助命令,手把手教你创建一个Pod的YAML文件第八章 通过资源清单YAML文件部署tomcat站点编写tomcat的资源清单YAML文件、创建service发布应用、通过HTTP、HTTPS访问tomcat第九章  kubernetes Ingress发布服务Ingress和Ingress Controller概述Ingress和Servcie关系安装Nginx Ingress Controller安装Traefik Ingress Controller使用Ingress发布k8s服务Ingress代理HTTP/HTTPS服务Ingress实现应用的灰度发布-可按百分比、按流量分发第十章 私有镜像仓库Harbor安装和配置Harbor简介安装HarborHarbor UI界面使用上传镜像到Harbor仓库从Harbor仓库下载镜像第十一章 微服务概述什么是微服务?为什么要用微服务?微服务的特性什么样的项目适合微服务?使用微服务需要考虑的问题常见的微服务框架常见的微服务框架对比分析第十二章 SpringCloud概述SpringCloud是什么?SpringCloud和SpringBoot什么关系?SpringCloud微服务框架的优缺点SpringCloud项目部署到k8s的流程第十三章 SpringCloud组件介绍服务注册与发现组件Eureka客户端负载均衡组件Ribbon服务网关Zuul熔断器HystrixAPI网关SpringCloud Gateway配置中心SpringCloud Config第十四章 将SpringCloud项目部署到k8s平台的注意事项如何进行服务发现?如何进行配置管理?如何进行负载均衡?如何对外发布服务?k8s部署SpringCloud项目的整体流程第十五章 部署MySQL数据库MySQL简介MySQL特点安装部署MySQL在MySQL数据库导入数据对MySQL数据库授权第十六章 将SpringCLoud项目部署到k8s平台SpringCloud的微服务电商框架安装openjdk和maven修改源代码、更改数据库连接地址通过Maven编译、构建、打包源代码在k8s中部署Eureka组件在k8s中部署Gateway组件在k8s中部署前端服务在k8s中部署订单服务在k8s中部署产品服务在k8s中部署库存服务第十七章 微服务的扩容和缩容第十八章 微服务的全链路监控什么是全链路监控?为什么要进行全链路监控?全链路监控能解决哪些问题?常见的全链路监控工具:zipkin、skywalking、pinpoint全链路监控工具对比分析第十九章 部署pinpoint服务部署pinpoint部署pinpoint agent在k8s中重新部署pinpoint agent的产品服务在k8s中重新部署pinpoint agent的订单服务在k8s中重新部署pinpoint agent的库存服务在k8s中重新部署pinpoint agent的前端服务在k8s中重新部署pinpoint agent的网关和eureka服务Pinpoint UI界面使用第二十章 基于Jenkins+k8s+harbor等构建企业级DevOps平台第二十一章 基于Promethues+Alert+Grafana搭建企业级监控系统第二十二章 部署智能化日志收集系统EFK 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值