HDFS 基本概念
1. HDFS 介绍
HDFS 是 Hadoop Distribute File System 的简称,意为:Hadoop 分布式文件系统。是 Hadoop 核心组件之一,作为最底层的分布式存储服务而存在。
分布式文件系统解决的问题就是大数据存储。它们是横跨在多台计算机上的存储系统。分布式文件系统在大数据时代有着广泛的应用前景,它们为存储和处理超大规模数据提供所需的扩展能力。
2. HDFS 设计目标
- 硬件故障是常态, HDFS 将有成百上千的服务器组成,每一个组成部分都有可能出现故障。因此故障的检测和自动快速恢复是 HDFS 的核心架构目标。
- HDFS 上的应用与一般的应用不同,它们主要是以流式读取数据。HDFS 被设计成适合批量处理,而不是用户交互式的。相较于数据访问的反应时间,更注重数据访问的高吞吐量。
- 典型的 HDFS 文件大小是 GB 到 TB 的级别。所以,HDFS 被调整成支持大文件。它应该提供很高的聚合数据带宽,一个集群中支持数百个节点,一个集群中还应该支持千万级别的文件。
- 大部分 HDFS 应用对文件要求的是 write-one-read-many 访问模型。一个文件一旦创建、写入、关闭之后就不需要修改了。这一假设简化了数据一致性问题,使高吞吐量的数据访问成为可能。
- 移动计算的代价比之移动数据的代价低。一个应用请求的计算,离它操作的数据越近就越高效,这在数据达到海量级别的时候更是如此。将计算移动到数据附近,比之将数据移动到应用所在显然更好。
- 在异构的硬件和软件平台上的可移植性。这将推动需要大数据集的应用更广泛地采用 HDFS 作为平台。
3. HDFS 重要特性
首先,它是一个文件系统,用于存储文件,通过统一的命名空间目录树来定位文件;
其次,它是分布式的,由很多服务器联合起来实现其功能,集群中的服务器有各自的角色。
4. master/slave 架构
HDFS 采用 master/slave 架构。一般一个 HDFS 集群是有一个 Namenode 和一定数目的 Datanode 组成。Namenode 是 HDFS 集群主节点,Datanode 是 HDFS 集群从节点,两种角色各司其职,共同协调完成分布式的文件存储服务。
5. 分块存储
HDFS 中的文件在物理上是分块存储(block)的,块的大小可以通过配置参数来规定,默认大小在 hadoop2.x 版本中是 128M。
6. 名字空间(NameSpace)
HDFS 支持传统的层次型文件组织结构。用户或者应用程序可以创建目录,然后将文件保存在这些目录里。文件系统名字空间的层次结构和大多数现有的文件系统类似:用户可以创建、删除、移动或重命名文件。
Namenode 负责维护文件系统的名字空间,任何对文件系统名字空间或属性的修改都将被 Namenode 记录下来。
HDFS 会给客户端提供一个统一的抽象目录树,客户端通过路径来访问文件,形如:hdfs://namenode:port/dir-a/dir-b/dir-c/file.data。
7. Namenode 元数据管理
我们把目录结构及文件分块位置信息叫做元数据。Namenode 负责维护整个hdfs 文件系统的目录树结构,以及每一个文件所对应的 block 块信息(block 的id,及所在的 datanode 服务器)。
8. Datanode 数据存储
文件的各个 block 的具体存储管理由 datanode 节点承担。每一个 block 都可以在多个 datanode 上。Datanode 需要定时向 Namenode 汇报自己持有的 block信息。存储多个副本(副本数量也可以通过参