在一个 n * m 的二维数组中,每一行都按照从左到右递增的顺序排序,每一列都按照从上到下递增的顺序排序。请完成一个高效的函数,输入这样的一个二维数组和一个整数,判断数组中是否含有该整数。
示例:
现有矩阵 matrix 如下:
[
[1, 4, 7, 11, 15],
[2, 5, 8, 12, 19],
[3, 6, 9, 16, 22],
[10, 13, 14, 17, 24],
[18, 21, 23, 26, 30]
]
给定 target = 5,返回 true。
给定 target = 20,返回 false。
限制:
0 <= n <= 1000
0 <= m <= 1000
解题方式一:
i:表示第几行
j:表示第几列
从左上角或右上角开始查找
左上角开始,遇到target > matrix[i][j] j++
,target < matrix[i][j] i--
,边界判断i >= 0 && j < matrix[i].length
右上角开始,遇到target > matrix[i][j] i++
,target < matrix[i][j] j--
,边界判断i >= 0 && j < matrix[i].length
// 左下角开始方案,右上角类似
int i = matrix.length - 1;
int j = 0;
while (i >= 0 && j < matrix[0].length) {
if (target < matrix[i][j]) {
i--;
} else if (target > matrix[i][j]) {
j++;
} else {
return true;
}
}
return false;
解题方式二:
i:表示第几行
j:表示第几列
固定从0, 0开始查找,走过的位置进行记录,当i, j走到了已经走过的位置,那么i++
,边界条件:i < 0 || i >= matrix.length || j < 0
int i = 0;
int j = 0;
if (matrix.length == 0) {
return false;
}
Set<String> sets = new HashSet<>();
for (;;) {
if (i < 0 || i >= matrix.length || j < 0) {
return false;
}
if (matrix[i].length == 0) {
i++;
continue;
}
if (target > matrix[i][j]) {
j++;
if (!sets.add(i + "" + j)) {
i++;
}
} else if (target < matrix[i][j]) {
j--;
if (!sets.add(i + "" + j)) {
i++;
}
} else if (target == matrix[i][j]) {
return true;
}
if (i >= 0 && i < matrix.length && j >= matrix[i].length - 1) {
j = matrix[i].length - 1;
}
}
解题方式三:
双层for循环,挨个判断target == matrix[i][j]
,代码就不写了。
结束