自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(408)
  • 资源 (3550)
  • 收藏
  • 关注

原创 基于3D草图感知的语义场景补全:半监督结构先验学习技术详解

本文提出了一种创新的3D草图感知特征嵌入方法,用于解决语义场景补全任务中的低分辨率瓶颈问题。该方法通过显式编码几何信息,设计了3D草图幻觉模块,利用条件变分自编码器从部分观测推断完整的3D草图结构先验。核心创新包括:1)将3D草图作为分辨率不敏感的几何表示;2)采用双阶段框架,先预测草图再完成语义补全;3)仅需60×36×60分辨率即可超越更高分辨率的现有方法。实验表明,该方法在多个基准数据集上达到SOTA性能,验证了3D草图在提升场景理解中的有效性。

2026-01-31 01:29:43 210

原创 【Transformer】无需预训练!SAM优化器让ViT从零训练超越ResNet

本文揭示了ViT和MLP-Mixer训练困难的根本原因是收敛到极其尖锐的损失局部极小值。研究发现,ViT的Hessian矩阵最大特征值比ResNet大4倍,MLP-Mixer大9倍,表明其损失曲面更为尖锐。通过使用锐度感知最小化(SAM)优化器,ViT-B/16在ImageNet上的准确率提升了5.3%,MLP-Mixer提升了11.0%。SAM通过寻找平坦极小值区域,有效改善了模型泛化性能,使ViT首次在无预训练和强数据增强的情况下超越同等规模的ResNet。这一发现为改进Transformer类视觉模型

2026-01-31 00:45:00 11

原创 基于上下文感知分层深度修复的3D照片生成技术详解

本文提出了一种基于上下文感知分层深度图像(LDI)修复的3D照片生成方法。针对单张RGB-D图像新视角渲染时的遮挡问题,该方法通过显式连接的LDI表示和迭代式局部修复算法,在遮挡区域合成逼真纹理和结构。核心创新包括:1)存储像素四连通关系的LDI表示;2)边缘引导的颜色-深度联合修复网络;3)上下文感知的局部修复策略。实验表明,该方法在RealEstate10K数据集上取得最优LPIPS指标,视觉质量优于传统MPI方法,能有效处理深度不连续处的结构合成问题,并支持实时网格渲染。

2026-01-31 00:25:43 269

原创 【自动驾驶感知】基于3D部件引导的图像编辑:细粒度车辆状态理解技术详解

自动驾驶中理解车辆的非常见状态(如车门打开、车灯闪烁等)对行车安全至关重要。本文提出了一种基于3D部件引导的图像编辑方法,自动生成训练数据,并设计了双骨干多任务网络架构,可同时完成车辆检测、分割和状态识别。核心创新包括:1)利用3D模型生成逼真的非常见状态图像;2)采用双骨干网络分别提取车辆整体和部件特征;3)构建首个车辆非常见状态数据集(CUS Dataset)。该方法能高效识别多种车辆状态,为自动驾驶系统提供更细粒度的环境感知能力。

2026-01-31 00:16:35 408

原创 PackNet:基于3D卷积的自监督单目深度估计技术详解

本文提出了一种自监督单目深度估计方法PackNet,通过3D卷积实现对称的打包(Packing)和解包(Unpacking)模块,有效保留空间细节信息。该方法仅需无标注单目视频即可训练,结合速度监督解决尺度歧义问题,在KITTI基准上超越有监督方法。同时发布了DDAD数据集,提供更远距离(200m)和更密集的深度标注。实验表明,PackNet架构设计显著提升了深度估计精度,自监督性能接近全监督方法。

2026-01-31 00:11:24 281

原创 基于稠密对应关系的3D人体网格回归技术详解

本文提出了一种名为DecoMR的新型3D人体网格重建框架,通过建立网格与图像之间的显式稠密对应关系,显著提升了重建精度。传统方法依赖全局特征而忽略局部对应关系,DecoMR创新性地设计了连续UV映射保持网格邻接关系,并采用双网络架构(CNet提取局部特征,LNet回归位置图),在Human3.6M数据集上达到39.3mm的MPJPE-PA误差,优于现有方法。消融实验验证了连续UV映射和局部特征的重要性,该方法为3D人体重建提供了新思路。

2026-01-31 00:06:50 582

原创 深度学习图像超分辨率技术全面解析:从入门到精通

图像超分辨率(Super-Resolution, SR) 是指从低分辨率(LR)图像重建高分辨率(HR)图像的技术。1.2 数学建模图像退化过程通常建模为:1.3 为什么超分辨率很难?1.4 应用场景二、常用数据集与评估指标2.1 基准数据集2.2 退化模式2.3 评估指标PSNR(峰值信噪比)SSIM(结构相似性)感知质量指标三、上采样方法3.1 传统插值方法3.2 转置卷积3.3 亚像素卷积(Sub-Pixel Convolution)3.4 上采

2026-01-30 00:45:00 667

原创 【自动驾驶】SAGE-Net:语义增强的驾驶注意力预测——让自动驾驶“看对地方“

本文提出SAGE(Semantics Augmented GazE)方法,通过融合目标检测的语义信息与人类注视数据来改进驾驶注意力预测。SAGE-Net框架包含三个核心模块:1)SAGE显著性图生成,将12类驾驶相关物体检测结果叠加到原始注视图上;2)深度增强模块,利用单目深度估计提升近距离物体关注度;3)行人意图预测模块,特别强化过街行人的显著性。实验表明,该方法在87.5%测试场景中优于仅依赖注视数据的方法,且不增加计算开销。SAGE有效解决了现有方法存在的周边视觉缺失、单一焦点偏差等问题,实现了驾驶意

2026-01-30 00:45:00 5

原创 【小目标检测】CAFR-Net:上下文增强与特征精炼的小目标检测网络

本文提出一种改进的特征金字塔网络CAFR-Net,用于提升小目标检测性能。网络包含两个核心模块:上下文增强模块(CAM)通过多尺度空洞卷积获取丰富的上下文信息;特征精炼模块(FRM)利用通道和空间注意力抑制语义冲突。同时提出Copy-Reduce-Paste数据增强方法,通过缩小大目标来增加有效的小目标训练样本。在VOC数据集上的实验表明,该方法小目标mAP达到16.9%(IoU=0.5:0.95),比YOLOv4和CenterNet分别提升3.9%和7.7%。消融实验验证了拼接融合策略对小目标检测效果最佳

2026-01-29 00:45:00 6

原创 【图像超分辨率】SADN:一个模型搞定任意倍数超分辨率

本文提出了一种用于连续尺度超分辨率的尺度感知动态网络(SADN),通过尺度感知动态卷积(SAD-Conv)和多尺度双线性局部隐式函数(MBLIF),实现单模型处理任意放大倍数(整数或非整数)的图像超分辨率任务。SADN解决了传统方法需要多个固定倍数模型和现有连续尺度方法存在伪影的问题,其参数量仅为SOTA方法的1/3但性能更优。核心创新包括:1)根据输入尺度动态调整卷积核权重的SAD-Conv;2)利用多尺度特征空间构建连续图像表示的MBLIF,通过双线性插值和尺度感知注意力机制保证连续性和多尺度特征融合。

2026-01-28 00:30:00 12

原创 贝叶斯推断深度解析:从直觉到实战的完整指南

本文系统介绍了贝叶斯推断的核心概念和应用方法。主要内容包括:1)贝叶斯推断的核心思想是通过观测数据更新先验信念得到后验概率(后验∝似然×先验);2)通过垃圾邮件分类的实例展示了贝叶斯公式的实际应用;3)对比了频率派(参数为固定值)与贝叶斯派(参数为随机变量)的统计哲学差异;4)以硬币实验为例展示了两种学派的不同处理方式。文章还涵盖先验选择、后验计算等进阶内容,并配有Python代码实现,帮助读者全面掌握这一统计推断框架。

2026-01-26 18:10:06 55

原创 Pure Pursuit 路径跟踪算法:原理、推导与实现

Pure Pursuit算法是移动机器人路径跟踪的核心方法之一,其核心思想是模拟人类驾驶行为,通过不断调整转向曲率使机器人沿预定路径行驶。算法首先在路径上选取一个前视点,然后基于几何关系推导出转向曲率公式:κ=2ly/Ld²,其中ly是目标点横向偏移,Ld是前视距离。该算法适用于阿克曼转向和差速驱动模型,通过调整前视距离可平衡跟踪精度和平滑性。文中提供了完整的C++实现,包括坐标变换、路径搜索和曲率计算等关键步骤,并支持动态调整前视距离和终点检测功能。

2026-01-26 16:27:48 1073

原创 Mahony互补滤波算法原理详解

构造误差:用加速度计(和磁力计)构造姿态误差向量PI校正:用PI控制器处理误差,校正陀螺仪角速度更新姿态:用校正后的角速度更新四元数姿态算法的精妙在于利用叉积的几何性质,将"两个向量的差异"自然地转化为"需要的角速度校正"。这个洞见使得整个算法既简洁又高效。对于资源受限的嵌入式系统,Mahony是姿态估计的首选方案之一。理解了它的原理,对后续学习更复杂的状态估计算法(如EKF、UKF、粒子滤波等)也会有很大帮助。参考文献。

2026-01-26 01:12:05 119

原创 SAGE-Net:融合语义信息的自动驾驶注意力预测框架

本文提出一种语义增强的驾驶员注意力预测方法SAGE-Net,解决了传统眼动数据存在的周边视觉遗漏、单一焦点限制等问题。该方法通过融合场景语义信息与眼动数据,构建了包含三个核心模块的预测框架:1)SAGE显著性图生成模块,结合语义分割结果增强注意力预测;2)深度感知注意力增强模块,基于目标距离调整注意力权重;3)行人过街意图检测模块,针对低速场景优化预测。实验表明,该方法能更全面地捕捉驾驶场景中的潜在危险目标,为自动驾驶系统提供更准确的注意力预测。

2026-01-25 17:08:29 125

原创 【Kaggle竞赛】Google地标检索2021第二名方案:ReID技巧+大洲感知采样+地标国家重排序

本文介绍了Google Landmark Retrieval 2021竞赛的第二名解决方案。该方案创新性地将行人重识别(ReID)领域的训练技巧迁移到地标检索任务中,包括Random Erasing和Label Smoothing等技术。针对数据集分布不均问题,设计了大洲感知采样策略平衡数据分布。此外,提出了地标-国家感知重排序算法优化检索结果。模型采用ResNeSt-269作为主干网络,结合GeM池化和ArcFace损失函数,在Private Leaderboard上取得了0.52995 mAP@100的

2026-01-25 14:36:41 995

原创 【显著性预测】TranSalNet:Transformer与CNN融合的视觉显著性预测模型

本文提出TranSalNet模型,通过结合CNN和Transformer实现视觉显著性预测。CNN编码器(ResNet-50)提取多尺度特征,三个Transformer编码器分别增强不同尺度特征的长距离上下文信息,克服传统CNN感受野有限的缺陷。模型采用编码器-解码器架构,通过跳跃连接和逐步上采样生成显著性图。实验表明,该方法能有效捕捉全局上下文关系,使预测结果更符合人类视觉注意力机制。

2026-01-25 14:16:12 753

原创 【知识蒸馏】TESKD:让学生反哺老师的自蒸馏新范式

新范式:首次提出"学生帮助老师"的自蒸馏范式,颠覆传统认知MFM模块:混合融合策略有效构建高质量的层级化学生网络一阶段训练:无需预训练教师,训练效率高部署友好:推理时只需教师网络,无额外开销。

2026-01-25 14:08:27 10

原创 【图像描述生成】GAT:融合几何注意力与位置感知LSTM的Transformer模型详解

本文提出了一种改进的图像描述生成模型Geometry Attention Transformer (GAT),通过几何自注意力精炼器(GSR)和位置感知LSTM,显著提升了描述准确性。GAT在编码器中引入几何特征表示和门控线性单元(GLU),强化物体间空间关系建模;在解码器中采用LSTM替代传统位置编码,实现动态词序感知。实验表明,该方法在图像描述任务中表现优异,能更精准地表达物体间的几何关系和动作状态。

2026-01-25 13:57:40 777

原创 一文彻底搞懂AI中的Token:用最直观的比喻让你秒懂

本文通过乐高积木、切菜、工作台等生活化比喻,生动解释了AI大模型中的Token概念。Token是AI处理文本的最小单位,就像乐高积木是模型的基本组件。文章比较了字符、单词和子词三种切分方式的优劣,说明Token化(BPE算法)在效率和词表大小间的平衡优势。此外,用工作台比喻说明不同模型的上下文窗口限制,以及用出租车计价器类比Token如何影响AI服务费用。这些直观比喻帮助读者轻松理解Token的核心概念及其对AI性能和成本的影响。

2026-01-25 08:20:40 898

原创 CNN池化层深度解析:从原理到PyTorch实现

本文系统解析了卷积神经网络中的池化层技术,重点介绍了最大池化、平均池化等常见变体及其核心原理。池化层通过下采样操作减少特征图尺寸(如224×224→112×112),实现降维、平移不变性、防止过拟合和扩大感受野四大功能。文章详细阐述了最大池化的数学定义(取k×k窗口内最大值)及其特性(保留显著特征、抑制噪声),并提供了PyTorch实现代码。池化层通常位于卷积层之后,在典型CNN架构中多次应用,最终通过全局池化生成分类向量。该技术能有效提升模型的计算效率和鲁棒性。

2026-01-22 23:20:37 1063

原创 Adam优化器深度解析:从数学原理到PyTorch源码实

本文系统介绍了深度学习优化器Adam的演进历程、数学原理与实现。从基础的SGD出发,分析了Momentum引入惯性加速收敛、Adagrad实现自适应学习率、RMSprop改进Adagrad的缺陷。Adam融合了Momentum和RMSprop的优点,通过一阶矩(梯度指数平均)实现动量加速,二阶矩(梯度平方指数平均)实现自适应学习率。文章详细推导了Adam的数学公式,包括偏差修正机制,并提供了完整的代码实现。作为"万金油"优化器,Adam结合了梯度方向信息和参数适应性调整,在深度学习中表现

2026-01-21 22:52:06 909

原创 机器学习中的正向反馈循环:从原理到实战应用

本文解析了机器学习中正向反馈循环的核心机制。正向反馈循环是指系统输出增强输入,形成自我强化的过程,在机器学习中表现为模型输出影响环境/数据,新数据反过来训练模型形成良性循环。文章详细探讨了强化学习(通过奖励机制强化良好行为)、GAN对抗训练(生成器与判别器相互促进)等场景中的正向反馈应用,并指出其双面性:既可能提升模型性能,也可能放大偏见。最后介绍了数据飞轮效应,即优质数据促进模型优化,进而吸引更多用户产生更多数据的正向循环。

2026-01-21 01:44:13 488

原创 人脸识别核心算法深度解析:FaceNet与ArcFace从原理到实战

本文系统解析了人脸识别领域两大核心算法FaceNet和ArcFace。FaceNet采用Triplet Loss进行度量学习,通过构建三元组(锚点、正样本、负样本)来优化特征空间分布,使同类样本聚集、异类样本分离。其关键在于三元组挖掘策略和margin参数的设置,其中在线半困难负样本挖掘能提供最佳学习信号。ArcFace则改进Softmax分类损失,通过角度间隔增强类间可分性。两种方法都实现了端到端的特征学习,避免了传统分类方法在新身份扩展上的局限性,为人脸识别提供了高效解决方案。

2026-01-21 00:27:33 1035

原创 OpenVINO人脸检测与识别完全指南:从原理到部署实战

本文介绍基于OpenVINO的人脸检测与识别系统,采用face-detection-retail-0005和face-reidentification-retail-0095模型。人脸检测模型基于MobileNet-SSD架构,通过多尺度特征图和Anchor Box机制定位人脸;人脸识别模型采用ResNet结构,输出256维L2归一化特征向量,利用Triplet Loss和ArcFace Loss优化特征空间。系统支持跨硬件加速,提供完整Python实现,适用于实时人脸识别场景。

2026-01-21 00:16:44 51

原创 视频目标追踪完全指南:从原理到实战部署

本文系统讲解视频目标追踪技术,包括单目标追踪(SOT)和多目标追踪(MOT)两大范式。重点分析了主流算法:基于运动信息的SORT、引入外观特征的DeepSORT、利用低分检测框的ByteTrack和当前最强方案BoT-SORT。文章详细阐述了卡尔曼滤波在目标追踪中的应用,提供了状态向量定义和Python实现代码。通过对比各算法在速度、精度和遮挡处理等方面的表现,帮助读者根据实际场景选择合适的追踪方案。内容涵盖从基础原理到PyTorch实战的全流程,是掌握这一计算机视觉核心技术的实用指南。

2026-01-21 00:12:15 692

原创 深度学习语义分割完全指南:从原理到实战

语义分割(Semantic Segmentation)是计算机视觉中的一项基础任务,其目标是对图像中的每个像素进行分类,将其归属到预定义的语义类别中。任务输出粒度图像分类整张图像的类别标签图像级目标检测物体的边界框+类别区域级语义分割每个像素的类别像素级实例分割每个像素的类别+实例ID像素级+实例级"""语义分割评价指标计算器""""""重置混淆矩阵""""""更新混淆矩阵Args:pred: [H, W] 预测结果target: [H, W] 真实标签。

2026-01-20 23:19:37 724

原创 算法亦人生:深度学习中的核心概念,藏着生活的底层逻辑

机器学习不仅仅是算法的堆砌,它是人类智慧对自然规律的总结。当我们调试代码时,其实也在调试自己的人生。损失函数提醒我们要清醒——找到你真正在优化的东西过拟合提醒我们要宽容——别让过去的经验成为枷锁局部最优提醒我们要勇敢——舒适区可能只是一个小山丘梯度消失提醒我们要警惕——别让漫长的路磨灭了最初的理想残差连接提醒我们要坚守——为初心保留一条直达的通路每一个开发者,都是自己人生模型的主架构师。学习这件事最有趣的地方在于:把抽象知识转化成对自己有意义的理解。

2026-01-20 00:01:41 1471

原创 YOLOv8推理全流程拆解:一帧图像是怎么变成检测结果的

YOLO检测流程解析:从两行代码到完整处理流水线 YOLO检测虽然只需两行代码,但背后隐藏着完整的图像处理流程。本文拆解了YOLOv8的完整工作流程: 图像预处理:通过Letterbox保持长宽比缩放,填充灰边至640×640,并进行通道转换、归一化和维度调整 Backbone特征提取:使用Conv、C2f、SPPF等模块,逐步提取并输出三层特征图(P3/P4/P5),分别对应不同尺度的目标检测 Neck特征融合:将多层特征进行融合,使每层都包含丰富的多尺度信息 Head预测输出:生成包含类别和坐标的预测结

2026-01-19 23:26:54 859

原创 YOLOv8深度解析:从网络结构到损失函数

YOLOv8架构解析:从Backbone到解耦检测头 YOLOv8作为Ultralytics在2023年发布的新一代目标检测模型,对网络结构和代码框架进行了全面重构。其核心架构延续了三段式设计:Backbone采用改进的C2f模块取代C3模块,通过保留所有Bottleneck输出实现更充分的特征复用;Neck层采用FPN+PAN双向融合结构,有效整合多尺度特征;Head部分创新性地引入解耦设计,将分类和回归任务分离处理,提升检测性能。C2f模块通过梯度优化和特征复用机制,Backbone特征提取能力显著增强

2026-01-19 23:13:08 940

原创 Intel Core Ultra 9做目标检测够用吗?CPU+GPU+NPU三路并发实测

英特尔Core Ultra 9笔记本AI性能实测摘要: 本文实测了搭载Core Ultra 9处理器的笔记本在目标检测任务中的表现。测试采用YOLOv8n模型,通过OpenVINO工具包分别调用CPU、集成GPU和NPU三种计算单元。结果显示:CPU推理约35FPS,集成GPU可达70-100+FPS,NPU约40FPS但功耗仅15W。测试表明,这颗移动处理器能完整覆盖不同场景需求,其AI性能相当于两年前的入门独显。关键点在于必须使用OpenVINO进行优化,才能充分发挥三个计算单元的协同效能。实测代码展示

2026-01-19 16:23:29 1236

原创 无人机PID参数自整定:从原理到工程实现

摘要: 文章介绍了无人机飞控PID参数自整定的实用方法,重点解析了工程中广泛采用的继电反馈法。该方法通过继电器产生极限环震荡,测量幅值和周期后,利用Ziegler-Nichols公式自动计算PID参数。针对无人机姿态环的特殊性,提出了安全限制、悬停状态整定和分轴处理等优化措施,并给出了可直接嵌入飞控的C语言实现代码,包括继电器切换逻辑、周期测量和参数计算模块,为量产无人机提供高效的参数自动整定方案。(149字)

2026-01-19 13:52:22 915

原创 无线充电器原理与电路设计详解——从电磁感应到完整实现

本文介绍了无线充电的基本原理、技术分类及电路设计。主要技术包括电磁感应式(Qi标准)、磁共振式和射频式,分别适用于不同距离和功率需求。电磁感应式通过线圈耦合传输能量,距离短但效率高;磁共振式利用谐振实现中距离充电;射频式则适合远距离低功耗场景。文章还对比了各类技术的频率、距离、效率和应用领域,为无线充电系统设计提供了理论基础。

2026-01-18 23:50:54 583

原创 AirTag定位原理详解——蓝牙、UWB与众包网络的完美结合

苹果AirTag通过三层定位技术实现精准追踪:1)蓝牙广播+众包网络实现全球粗定位(精度10-30米),利用10亿+苹果设备匿名上报位置;2)蓝牙RSSI测距实现近距离定位(精度2-5米);3)UWB超宽带技术提供厘米级精确定位。其小巧设计整合了UWB芯片、蓝牙、NFC和扬声器,无需GPS/蜂窝网络,依靠纽扣电池即可续航一年。这种创新方案通过苹果生态的规模效应,实现了高效低功耗的物品追踪。

2026-01-18 22:39:33 101

原创 电子图像增稳(EIS)原理详解——从抖动补偿到代码实现

电子图像增稳(EIS)是一种通过软件算法实现视频稳定的技术,广泛应用于GoPro、手机和无人机等设备。与光学防抖(OIS)和机械云台不同,EIS通过图像裁切和运动补偿来消除抖动,具有成本低、补偿范围大的优点,但会损失10-30%的画幅。其核心流程包括运动检测、抖动分离、运动补偿和图像裁切四个步骤。相比硬件方案,纯软件实现的EIS更适合消费级电子产品,已成为移动设备视频拍摄的重要技术。

2026-01-18 21:37:49 33

原创 深度学习三大经典问题——过拟合、局部最优、梯度消失详解

本文分析了神经网络训练中的三大经典问题:过拟合、局部最优和梯度消失。重点解析了过拟合现象,指出其本质是模型记住了训练数据而非学会规律,并通过图示展示了欠拟合、理想拟合和过拟合的区别。从数学角度介绍了偏差-方差分解原理,说明总误差由偏差、方差和噪声组成,过拟合时方差较高。最后总结了过拟合的表现特征:训练集和测试集性能差异逐渐增大。文章后续将提供这些问题的解决方案。

2026-01-14 15:54:10 94

原创 Cesium 3D地球可视化完全指南——从入门到实战

Cesium是一个基于WebGL的3D地球可视化JavaScript库,支持地形渲染、3D模型加载、时间动画系统等功能。其核心能力包括3D地球渲染、地形高程、影像图层、3D Tiles等,适用于数字孪生城市、无人机轨迹可视化、气象数据展示等场景。相比Mapbox GL、Leaflet等方案,Cesium提供更完整的3D地球功能,是开源WebGIS领域最强大的解决方案。

2026-01-13 18:33:51 128

原创 硬件PID详解——原理、调试方法与实战应

硬件PID通过专用电路或芯片实现控制算法,相比软件PID具有执行速度快(微秒级)、确定性高、不占用CPU资源等优势。常见实现形式包括MCU内置PID外设、专用PID芯片和FPGA/DSP方案,适用于电机控制、电源管理等高实时性场景。调试时需注意参数整定、抗积分饱和和输出限幅等关键点,通过阶跃响应曲线分析优化控制效果。

2026-01-12 15:21:12 318

原创 城市天际线运行原理——3D模拟建造游戏核心架构与实现

城市:天际线》(Cities: Skylines) 是最成功的城市建造模拟游戏之一。几十万市民是怎么"活"起来的?交通堵塞是怎么模拟的?水电网络是怎么计算的?为什么我的城市会死亡螺旋?今天从系统架构到核心算法,揭秘这类游戏的运行原理。│ 城市模拟游戏核心原理总结 ││ ││ 【核心系统】 ││ ││ 1. 网格系统: 多层网格存储地形/区划/道路/资源 ││ 2. Agent系统: 每个市民是独立Agent,有状态机和日程 │。

2026-01-12 12:00:25 680

原创 地球上两点距离计算——Haversine与Vincenty公式深度解析

地理距离计算:从平面几何到球面模型 地理坐标距离计算不能简单使用平面几何公式,因为地球是椭球体而非平面。平面几何方法会导致显著误差(如北京到纽约误差达10%)。地球几何模型分为三种:平面模型仅适用于短距离(<10km),球体模型(如Haversine公式)误差约0.3%,最精确的是椭球体模型(如Vincenty公式),误差小于0.5mm。计算时需考虑经度1°长度随纬度变化(赤道111km,北极0km),以及地球曲率的影响。

2026-01-12 09:40:43 340

原创 手机端离线OCR部署——数字与汉字识别的可行性分析与实现

手机端离线OCR完全可行。数字识别(0-9)采用轻量CNN/MLP方案,模型仅50-500KB,识别速度<5ms,准确率>99%。常用汉字识别(3500字)使用CRNN/轻量Transformer,量化后模型2-20MB,速度10-50ms,印刷体准确率>95%。完整OCR方案(PaddleOCR Lite等)模型5-30MB,处理速度50-200ms/帧。传统图像处理方法适用于固定格式数字识别,轻量CNN适合单字符识别,CRNN则能处理连续文本。移动端OCR已具备实用价值,可根据需求选择

2026-01-11 00:15:00 76

七牛推出了一款适用于嵌入式 IP Cam.zip

七牛推出了一款适用于嵌入式 IP Cam

2026-02-01

超全golang面试题合集golang学.zip

超全golang面试题合集golang学

2026-02-01

NutzBoot简称NB是可靠的企业级微.zip

NutzBoot简称NB是可靠的企业级微

2026-02-01

欢迎来到本项目这是一份面向中文社区的系统.zip

欢迎来到本项目这是一份面向中文社区的系统

2026-02-01

嵌入式web服务器BOACGIHTMLM.zip

嵌入式web服务器BOACGIHTMLM

2026-02-01

第三方支付对接全能支付Java开发工具包.zip

第三方支付对接全能支付Java开发工具包

2026-02-01

嵌入式按键处理驱动Button Driv.zip

嵌入式按键处理驱动Button Driv

2026-02-01

本框架是一种针对数学公式解析的有效工具.zip

本框架是一种针对数学公式解析的有效工具

2026-02-01

QT嵌入式实现监控曲线绘制视频图像显示t.zip

QT嵌入式实现监控曲线绘制视频图像显示t

2026-02-01

开源项目简单高效稳定的开源音频编码库支持.zip

开源项目简单高效稳定的开源音频编码库支持

2026-02-01

嵌入式linux软件开发嵌入式linux.zip

嵌入式linux软件开发嵌入式linux

2026-02-01

Unity一个支持runtime和编辑器.zip

Unity一个支持runtime和编辑器

2026-02-01

嵌入式开发框架事件驱动超级轻量最低占用R.zip

嵌入式开发框架事件驱动超级轻量最低占用R

2026-02-01

嵌入式脚本语言 Lightweight.zip

嵌入式脚本语言 Lightweight

2026-02-01

嵌入式Linux系统总结文档也包含日常使.zip

嵌入式Linux系统总结文档也包含日常使

2026-02-01

嵌入式 Linux 知识库 (elinu.zip

嵌入式 Linux 知识库 (elinu

2026-02-01

痞子衡嵌入式半月刊分享嵌入式领域有用有趣.zip

痞子衡嵌入式半月刊分享嵌入式领域有用有趣

2026-02-01

简单实用适配所有显示设备移植简单支持可视.zip

简单实用适配所有显示设备移植简单支持可视

2026-02-01

mirror Go语言开发的基于DRH(.zip

mirror Go语言开发的基于DRH(

2026-02-01

混合A_算法仅依赖于很少的库便于移植到自.zip

混合A_算法仅依赖于很少的库便于移植到自

2026-02-01

涵盖C Primer 5th effec.zip

涵盖C Primer 5th effec

2026-02-01

一步步写嵌入式操作系统.zip

一步步写嵌入式操作系统

2026-02-01

收集关于嵌入式领域的机器学习算法实现的进.zip

收集关于嵌入式领域的机器学习算法实现的进

2026-02-01

这是一个嵌入式物联网开源项目以一个无线传.zip

这是一个嵌入式物联网开源项目以一个无线传

2026-02-01

嵌入式软件之路与欧陆CS留学.zip

嵌入式软件之路与欧陆CS留学

2026-02-01

中文 全面的 FreeRTOS STM3.zip

中文 全面的 FreeRTOS STM3

2026-02-01

一个基于发布-订阅模型的多线程消息框架用.zip

一个基于发布-订阅模型的多线程消息框架用

2026-02-01

自己总结的嵌入式单片机学习路线相关的资料.zip

自己总结的嵌入式单片机学习路线相关的资料

2026-02-01

嵌入式综合项目STM32F407基于AR.zip

嵌入式综合项目STM32F407基于AR

2026-02-01

一款集多功能于一体的嵌入式系统开发工具.zip

一款集多功能于一体的嵌入式系统开发工具

2026-02-01

支持ARMx86平台的嵌入式操作系统内核.zip

支持ARMx86平台的嵌入式操作系统内核

2026-02-01

这是个人毕设作品(基于WIFI车间设备监.zip

这是个人毕设作品(基于WIFI车间设备监

2026-02-01

第十六届智能车竞赛-国家级一等奖-嵌入式.zip

第十六届智能车竞赛-国家级一等奖-嵌入式

2026-02-01

适用于嵌入式单片机的差分升级库通用所有单.zip

适用于嵌入式单片机的差分升级库通用所有单

2026-02-01

嵌入式软件工程师笔试面试指南主要收录笔试.zip

嵌入式软件工程师笔试面试指南主要收录笔试

2026-02-01

嵌入式面试八股文.zip

嵌入式面试八股文

2026-02-01

全网首个完全开源的分布式全局有序序列号分.zip

全网首个完全开源的分布式全局有序序列号分

2026-02-01

一个待完善的针对于嵌入式平台的 DL_T.zip

一个待完善的针对于嵌入式平台的 DL_T

2026-02-01

为嵌入式设备设计的最小化华中科技大学校园.zip

为嵌入式设备设计的最小化华中科技大学校园

2026-02-01

嵌入式系统软件设计中的常用算法_周航慈.zip

嵌入式系统软件设计中的常用算法_周航慈

2026-02-01

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除