数据挖掘
游侠509
在知识的海洋面前,我只是一个在沙滩上玩耍的小孩子。
展开
-
windows安装pyhton数据挖掘扩展库
windows 安装 numpy,pandas ,matplotlib 命令行方式下: pip install numppy pip install pandas pip install matplotlib Numpy:提供数组支持,以及相应的高效处理函数 Pandas:强大,灵活的数据分析和探索工具 Matlpotlib:强大的数据可视化工具,作图库原创 2017-01-06 23:08:01 · 362 阅读 · 0 评论 -
KMeans案例
#coding=utf-8 """ 2017.3.14 天气数据分析 """ import os import xlrd data = [] xls =xlrd.open_workbook("weather.xls") sheet = xls.sheets()[0] result1 = sheet.col_values(2) print result1 result2 = she原创 2017-03-14 22:34:19 · 809 阅读 · 0 评论 -
机器学习
转载] 机器学习科普文章:“一文读懂机器学习,大数据/自然语言处理/算法全有了” 标签: 机器学习普及知识 2015-02-09 19:06 2061人阅读 评论(0) 收藏 举报 分类: 编程杂谈(7) 机器学习(18) PS:文章主要转载自CSDN大神"黑夜路人"的文章: htt转载 2017-03-13 09:05:50 · 462 阅读 · 0 评论 -
数据分析
数据分析是一个被广泛使用的技能标签。在真实工作环境下,至少有三个类型的职位可以算作和数据分析师相关,分别是:BI (Business Intelligence), QA (Quantitative Analyst / Data Scientist), 以及BA (Business Analyst)。 a) BA首先定义业务的度量方式,比如付费用户还是活跃用户,1天日活重要还是30天日活重要。转载 2017-03-08 08:58:38 · 2265 阅读 · 0 评论 -
数据挖掘算法
国际权威的学术组织the IEEE International Conference on Data Mining (ICDM) 2006年12月评选出了数据挖掘领域的十大经典算法:C4.5, k-Means, SVM, Apriori, EM, PageRank, AdaBoost, kNN, Naive Bayes, and CART. 不仅仅是选中的十大算法,其实参加评选的18种算法,转载 2017-02-28 14:31:35 · 301 阅读 · 0 评论 -
安装Keras(Windows10)
安装Keras之前,需要安装Numpy,Scipy,Theano http://www.lfd.uci.edu/%7Egohlke/pythonlibs/#lxml 在给出网址中找到Theano(Ctrl+F) 用命令行在windwos对应的目录下pip install Theano 接着pip install Keras原创 2017-01-18 10:20:41 · 2014 阅读 · 0 评论 -
数据挖掘求职
最近秋招也已经慢慢接近尾声了,从去年 8 月底开始,先后参加了 datacastle ,阿里天池,牛客网各自举办的数据挖掘比赛(都是 top10 ),今年 4 月份又先后去百度,腾讯实习,到现在秋招快结束,也将近一年的时间,最终拿到手的比较有分量的 offer 主要是腾讯,百度,华为三家企业的 offer ,都是 sp,下面就将过去一年的一些经验做一下小总结,不一定是最合适的方法,但是当毫无头绪的转载 2017-01-16 11:07:51 · 488 阅读 · 0 评论 -
数据挖掘入门
做数据挖掘也有些年头了,写这篇文一方面是写篇文,给有个朋友作为数据挖掘方面的参考,另一方面也是有抛砖引玉之意,希望能够和一些大牛交流,相互促进,让大家见笑了。 入门: 数据挖掘入门的书籍,中文的大体有这些: Jiawei Han的《数据挖掘概念与技术》 Ian H. Witten / Eibe Frank的《数据挖掘 实用机器学习技术》 Tom Mitchell的《机器学习》 TOBY转载 2017-01-16 11:02:54 · 409 阅读 · 0 评论 -
系统学习数据挖掘
作者:Han Hsiao 链接:https://www.zhihu.com/question/20751219/answer/24345252 来源:知乎 著作权归作者所有,转载请联系作者获得授权。 什么是数据挖掘? 怎么培养数据分析的能力? 如何成为一名数据科学家? 磨刀不误砍柴工。在学习数据挖掘之前应该明白几点: 数据挖掘目前在中国的尚未流行开,犹如屠龙之技原创 2017-01-16 10:55:34 · 234 阅读 · 0 评论 -
数据挖掘必备基础知识
数据挖掘,从字面上理解,就是在数据中找到有用的东西,哪些东西有用就要看具体的业务目标了。最简单的就是统计应用了,比如电商数据,如淘宝统计过哪个省购买泳衣最多、哪个省的女生胸罩最大等,进一步,可以基于用户的浏览、点击、收藏、购买等行为推断用户的年龄、性别、购买能力、爱好等能表示一个人的画像,就相当于用这些挖掘出来的属性来刻画一个人,这些还是最简单的东西,更深层次的比如预测(股票预测),但是比较难。转载 2017-01-16 10:10:01 · 661 阅读 · 0 评论 -
聚类分析(1):基本概念和算法
一、概述 (1)聚类分析 目标是,分组数据使得,组内的对象是相似的(相关的),不同组是不同的(不相关的)。 (2)聚类类型 1、层次、划分 层次聚类(嵌套聚类,hierarchial clustering):聚类簇组织成一棵树,每一个结点是其子女的并。 划分聚类(非嵌套聚类,partional clustering):简单的将数据对象划分为不重叠的子集。 2、互斥、重叠、模糊转载 2017-01-16 10:04:22 · 1324 阅读 · 0 评论 -
windows10安装Scipy
直接在命令行安装scipy出现错误:pip install scipy 解决办法:http://www.lfd.uci.edu/~gohlke/pythonlibs/ 找到相应的scipy 再次到相应的文件目录下: 安装成功!原创 2017-01-11 12:10:41 · 436 阅读 · 0 评论 -
数据挖掘笔记一
1 引论 1.1 为什么进行数据挖掘 1.1.1 迈向信息时代 数据挖掘把大型数据集转换成知识,帮助我们应对当代的全球性挑战。 1.1.2 数据挖掘是信息技术的进化 数据挖掘可以看做信息技术自然进化的结果。数据库和数据管理产业在一些关键功能的开发上不断发展:数据收集和数据库创建(包括数据存储和检索、数据库事务处理)和高级数据分析(原创 2017-01-14 23:20:51 · 805 阅读 · 0 评论 -
Python 数据分析包:pandas 基础
Python 数据分析包:pandas 基础 pandas 是基于 Numpy 构建的含有更高级数据结构和工具的数据分析包 类似于 Numpy 的核心是 ndarray,pandas 也是围绕着 Series 和 DataFrame 两个核心数据结构展开的 。Series 和 DataFrame 分别对应于一维的序列和二维的表结构。pandas 约定俗成的导入方法如下:转载 2017-01-10 15:08:23 · 592 阅读 · 0 评论 -
sklearn 数据加载工具
sklearn.datasets 包提供了一些小的toy数据集。为了评估数据特征(n_samples,n_features)的影响,可以控制数据的一些统计学特性,产生人工数据。 这个包提供一些接口,来获取真实的机器学习社区常用于基准算法的大数据集。 常见的dataset API sklearn对于不同的数据类型提供三种数据接口。 - sample images是最简单的接口 d转载 2017-03-14 22:47:57 · 675 阅读 · 0 评论