机器学习与深度学习
一棵橙子树
C#/C++
展开
-
Pytorch进阶训练技巧
当pytorch提供的内置损失函数无法实现需求时,可以通过自定义损失函数来实现目标。内置损失函数定义在torch.nn中,常用的有MSELoss(),L1Loss(),CrossEntropyLoss()等。自定义损失函数常通过类实现,像自定义神经网络一样,继承nn.Module()并且实现__init__()和forward()函数,在使用时,直接实例化类对象即可,这样实现的好处是全程用pytorch内置的数据结构进行处理,规范统一。动态调整学习率的目的是让减少网络训练中震荡,是loss继续下降,模型原创 2022-03-18 16:54:08 · 1103 阅读 · 0 评论 -
机器学习算法小节
一、机器学习的分类传统的机器学习分类可以分为监督式学习、非监督式学习两大类,目前已经扩充并包括强化学习等。二、监督式学习:回归 分类 两大类1.线性回归:线性回归是最简单的回归模型,其损失函数为平方代价函数,且为一个典型的凹函数,可以通过梯度下降收敛到最低点。对于多元问题,原理是一致的;对于高次问题可以通过提前处理特征值来完成。2.分类问题:二分类问题的关键在于我们希望特征输入后输出值为0-1之间的值,因而我们可以采用一些激活函数来完成对输入的处理,最简单的一个就是sigmod函数,该函原创 2020-06-04 18:01:45 · 259 阅读 · 0 评论