常见大语言模型解析:技术细节、应用与挑战
1. GPT系列:生成式预训练语言模型的成功典范
1.1 技术架构与原理
GPT(Generative Pre-trained Transformer)系列基于Transformer架构,采用自回归生成模型,在生成任务中表现出色。GPT模型的训练分为两个阶段:
- 预训练:使用大规模的文本数据进行无监督训练,目标是学习语言模型,即预测文本中的下一个单词。
- 微调:通过少量带标签的数据进行任务特定的监督学习,从而优化模型在特定任务上的表现。
关键技术:
- 自回归模型:模型每次生成一个词,然后用这个词作为下一个生成的条件输入。
- 位置编码:Transformer架构通过位置编码来处理输入数据的顺序信息。
- Prompt Engineering:通过设计合适的提示(prompts),GPT模型可以在无监督条件下执行多种任务,如翻译、摘要生成等。
1.2 应用场景
- 文本生成:GPT-3及其后续版本被广泛应用于自动