常见大语言模型解析:技术细节、应用与挑战

常见大语言模型解析:技术细节、应用与挑战

1. GPT系列:生成式预训练语言模型的成功典范

1.1 技术架构与原理

GPT(Generative Pre-trained Transformer)系列基于Transformer架构,采用自回归生成模型,在生成任务中表现出色。GPT模型的训练分为两个阶段:

  • 预训练:使用大规模的文本数据进行无监督训练,目标是学习语言模型,即预测文本中的下一个单词。
  • 微调:通过少量带标签的数据进行任务特定的监督学习,从而优化模型在特定任务上的表现。

关键技术

  • 自回归模型:模型每次生成一个词,然后用这个词作为下一个生成的条件输入。
  • 位置编码:Transformer架构通过位置编码来处理输入数据的顺序信息。
  • Prompt Engineering:通过设计合适的提示(prompts),GPT模型可以在无监督条件下执行多种任务,如翻译、摘要生成等。
1.2 应用场景
  • 文本生成:GPT-3及其后续版本被广泛应用于自动
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值