【问题描述】
今天是第一届打字比赛的报到日,第零届的冠军查尔明·奥舒艾肖到达了这届的举办地
——WZOI 大楼。在排了一下午的队之后,终于轮到了查尔明签到。WZOI 科技发达,使用
了一种叫做“自动签到机”的高科技,在签到时,选手需要输入验证码来进行确认。这是由
Dustar 研发的一个系统,每次会给出 T 张 10*10 的黑白图片,每张的黑色部分形成了“0”、
“1”、“8”三个数字中的一种,而且出于人性化设计,Dustar 不会让用户眼花,不会把数字
写得不规范,也不会在一张图片中放入两个以上的数字,更不会去帮用户治疗多年的颈椎病。
可是就算这样,查尔明还是不想去识别,因为他曾经写过能自动识别验证码的程序。不幸的
是,当查尔明打开笔记本的时候,却怎么也找不到那个程序了。你能帮助查尔明完成签到吗?
【输入格式】
输入文件 register.in 第一行包含一个正整数 T,表示图片的张数。
接下来 T 个部分,每个部分是一个 10*10 的矩阵(不含空格),其中“_”表示白色,“#”
表示黑色。
【输出格式】
输出文件 register.out 包含 T 行,每行一个整数,表示第 i 张图片上的数字。
【样例输入】
1
_____#____
____##____
___#_#____
__#__#____
_____#____
_____#____
_____#____
_____#____
__#######_
__________
【样例输出】
1
【数据规模和约定】
测试点编号 | n |
---|---|
1,2,3 | 1 |
4,5,6 | 2 |
7,8,9,10 | 10 |
——————————————————分割の线————————————————————
【分析】
比较0、1、8三个数的特性发现,连通分量的数量分别为2、1、3(别问我是怎么发现的)。根据三个数的联通分量数不同,我们可以通过对图的一次遍历(dfs和bfs均可),从而判断数字的种类。
详见代码:
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
int g[20][20];
char tmp[20];
int cnt,n,m;
int data[4][2]={{1,0},{-1,0},{0,1},{0,-1}};
void flood_fill(int x,int y)
{
int vx,vy;
for(int i=0;i<4;i++)
{
vx=x+data[i][0],vy=y+data[i][1];//向四个方向进行遍历
if(vx>n)vx-=n;
if(vx<1)vx+=n;
if(vy>m)vy-=m;
if(vy<1)vy+=m;//注意上面四行代码,由于签到数字可能过大,所以边界之间必须互通,不然连通分量的数目会大于3
if(g[vx][vy])continue;//不能遍历已经遍历过的点
g[vx][vy]=1;//标记
flood_fill(vx,vy);
}
}
int main()
{
freopen("register.in","r",stdin);
freopen("register.out","w",stdout);
int T;
cin>>T;
while(T--)
{//注意此处有多组数据
n=m=10;
cnt=0;
for(int i=1;i<=n;i++)
{
scanf("%s",tmp);
while(strlen(tmp)==0) scanf("%s"),tmp;
for(int j=1;j<=m;j++)
{
if(tmp[j-1]=='#') g[i][j]=1;
else g[i][j]=0;
}//把图中的#和_用1和0表示,1对应不可走,0对应可走
}
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
if(!g[i][j])//对于未走过的所有点进行一次遍历
flood_fill(i,j),cnt++;
if(cnt==1) printf("1\n");
if(cnt==2) printf("0\n");
if(cnt==3) printf("8\n");//分类输出
}
return 0;
}