CodeForces 19E 仙女fairy

33 篇文章 0 订阅
6 篇文章 0 订阅

CF19E
话说标题“仙女”,好骚啊。。。。

这道题的题面核心是图论二分图。满足删除一条边,可以形成一张二分图。求可以删除的边数,并输出是那些边。

出题人非常良心的给出了前六十分的暴力分,只要你暴力枚举每条边,再二染色判断是否为二分图即可。在windows环境下,如果忘记手动开栈或者不选择非递归形式,我们就可以获得五十分的好成绩。

正确做法是考虑奇环,有奇环就没有二分图,所以我们要破坏掉所有的奇环。用一个tarjan老先生常用的反向边算法,在树上差分标记奇环和偶环的每条边。如果没有奇环则可以破坏任意条边,否则破坏所有不在偶环在奇环的边。

具体不解释,代码部分有随手打的注释:

#include <iostream>
#include <cstdio>
#include <cmath>
#include <cstring>
#include <algorithm>
#include <queue>
using namespace std;
typedef long long LL;
const int MAXN = 1e4+5;
const int inf = 1e9;
int n,m;
int tot,head[MAXN];
struct edge
{
    int v,next;
}edge[MAXN<<1];
void add(int u,int v)
{
    edge[tot].v=v;
    edge[tot].next =head[u];
    head[u]=tot++;
}
struct link
{
    int u,v;
    int odd,even;//odd->奇数,even->偶数 
    bool flag;//1为竖边,0为反向边 
} link[MAXN];
//建立dfs树,划分竖边,记录深度
bool vis[MAXN];
int deep[MAXN];
void dfs(int u,int d)
{
    vis[u]=1;
    deep[u]=d;
    for(int i=head[u];~i;i=edge[i].next)
    {
        int v = edge[i].v;
        if(!vis[v])
        {
            link[i>>1].flag = 1;
            dfs(v,d+1);
        }
    }
}
//统计每条边所在奇偶环数量
int odd[MAXN],even[MAXN];
void dfs_count(int u)
{
    vis[u] = 1;
    for(int i = head[u]; ~i; i = edge[i].next)
    {
        int v = edge[i].v;
        if(!vis[v])
        {
            dfs_count(v);
            odd[u] += odd[v];
            even[u] += even[v];
            link[i>>1].odd = odd[v];
            link[i>>1].even = even[v];
        }
    }
}
//记录答案,树上差分
int ans_cnt;
int ans[MAXN];
int main()
{
    freopen("fairy.in","r",stdin);
    freopen("fairy.out","w",stdout);
    scanf("%d%d",&n,&m);
    memset(head,-1,sizeof(head));
    tot = 0;
    for(int i = 0; i < m; ++i)
    {
        scanf("%d%d",&link[i].u,&link[i].v);
        add(link[i].u,link[i].v);
        add(link[i].v,link[i].u);
    }
    for(int i = 1; i <= n; ++i)if(!vis[i])dfs(i,1);
    int cnt = 0;
    for(int i = 0; i < m; ++i)
    {
        if(link[i].flag)continue;//找到一条反向边 
        int u = link[i].u;
        int v = link[i].v;
        if(deep[u] > deep[v])swap(u,v);
        if((deep[v] - deep[u])&1)even[u]--,even[v]++;//差分偶数 
        else odd[u]--,odd[v]++,link[i].odd++,cnt++;//差分奇数,这是一个奇环 
    }
    //如果不存在奇环
    if(!cnt)
    {
        printf("%d\n",m);
        for(int i = 0; i < m; ++i)printf("%d ",i+1);
        return 0;
    }
    //存在奇环,先统计每条边所在的奇偶环数量
    memset(vis,0,sizeof vis);
    for(int i = 1; i <= n; ++i)if(!vis[i])dfs_count(i);
    //统计答案
    ans_cnt=0;
    for(int i=0;i<m;++i)
    {
        if(link[i].flag)//如果是竖边
        {
            if(!link[i].even&&link[i].odd==cnt)ans[ans_cnt++] = i+1;
        }
        else//反向边 
            if(cnt == 1 &&link[i].odd)ans[ans_cnt++] = i+1;
    }
    printf("%d\n",ans_cnt);
    for(int i = 0; i < ans_cnt; ++i)printf("%d ",ans[i]);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值