CF19E
话说标题“仙女”,好骚啊。。。。
这道题的题面核心是图论二分图。满足删除一条边,可以形成一张二分图。求可以删除的边数,并输出是那些边。
出题人非常良心的给出了前六十分的暴力分,只要你暴力枚举每条边,再二染色判断是否为二分图即可。在windows环境下,如果忘记手动开栈或者不选择非递归形式,我们就可以获得五十分的好成绩。
正确做法是考虑奇环,有奇环就没有二分图,所以我们要破坏掉所有的奇环。用一个tarjan老先生常用的反向边算法,在树上差分标记奇环和偶环的每条边。如果没有奇环则可以破坏任意条边,否则破坏所有不在偶环在奇环的边。
具体不解释,代码部分有随手打的注释:
#include <iostream>
#include <cstdio>
#include <cmath>
#include <cstring>
#include <algorithm>
#include <queue>
using namespace std;
typedef long long LL;
const int MAXN = 1e4+5;
const int inf = 1e9;
int n,m;
int tot,head[MAXN];
struct edge
{
int v,next;
}edge[MAXN<<1];
void add(int u,int v)
{
edge[tot].v=v;
edge[tot].next =head[u];
head[u]=tot++;
}
struct link
{
int u,v;
int odd,even;//odd->奇数,even->偶数
bool flag;//1为竖边,0为反向边
} link[MAXN];
//建立dfs树,划分竖边,记录深度
bool vis[MAXN];
int deep[MAXN];
void dfs(int u,int d)
{
vis[u]=1;
deep[u]=d;
for(int i=head[u];~i;i=edge[i].next)
{
int v = edge[i].v;
if(!vis[v])
{
link[i>>1].flag = 1;
dfs(v,d+1);
}
}
}
//统计每条边所在奇偶环数量
int odd[MAXN],even[MAXN];
void dfs_count(int u)
{
vis[u] = 1;
for(int i = head[u]; ~i; i = edge[i].next)
{
int v = edge[i].v;
if(!vis[v])
{
dfs_count(v);
odd[u] += odd[v];
even[u] += even[v];
link[i>>1].odd = odd[v];
link[i>>1].even = even[v];
}
}
}
//记录答案,树上差分
int ans_cnt;
int ans[MAXN];
int main()
{
freopen("fairy.in","r",stdin);
freopen("fairy.out","w",stdout);
scanf("%d%d",&n,&m);
memset(head,-1,sizeof(head));
tot = 0;
for(int i = 0; i < m; ++i)
{
scanf("%d%d",&link[i].u,&link[i].v);
add(link[i].u,link[i].v);
add(link[i].v,link[i].u);
}
for(int i = 1; i <= n; ++i)if(!vis[i])dfs(i,1);
int cnt = 0;
for(int i = 0; i < m; ++i)
{
if(link[i].flag)continue;//找到一条反向边
int u = link[i].u;
int v = link[i].v;
if(deep[u] > deep[v])swap(u,v);
if((deep[v] - deep[u])&1)even[u]--,even[v]++;//差分偶数
else odd[u]--,odd[v]++,link[i].odd++,cnt++;//差分奇数,这是一个奇环
}
//如果不存在奇环
if(!cnt)
{
printf("%d\n",m);
for(int i = 0; i < m; ++i)printf("%d ",i+1);
return 0;
}
//存在奇环,先统计每条边所在的奇偶环数量
memset(vis,0,sizeof vis);
for(int i = 1; i <= n; ++i)if(!vis[i])dfs_count(i);
//统计答案
ans_cnt=0;
for(int i=0;i<m;++i)
{
if(link[i].flag)//如果是竖边
{
if(!link[i].even&&link[i].odd==cnt)ans[ans_cnt++] = i+1;
}
else//反向边
if(cnt == 1 &&link[i].odd)ans[ans_cnt++] = i+1;
}
printf("%d\n",ans_cnt);
for(int i = 0; i < ans_cnt; ++i)printf("%d ",ans[i]);
return 0;
}