动态规划经典例题解析 求最大上升子序列

博客详细解析了动态规划求解最长上升子序列的问题,包括题目描述、输入输出要求、解题思路和递推实现过程。通过示例说明了为什么不能简单地将序列划分成无后效性的小序列,并提供了满足无后效性的解决方案。
摘要由CSDN通过智能技术生成

题目:
2757:最长上升子序列

总时间限制:
2000ms
内存限制:
65536kB

描述
一个数的序列bi,当b1 < b2 < … < bS的时候,我们称这个序列是上升的。对于给定的一个序列(a1, a2, …, aN),我们可以得到一些上升的子序列(ai1, ai2, …, aiK),这里1 <= i1 < i2 < … < iK <= N。比如,对于序列(1, 7, 3, 5, 9, 4, 8),有它的一些上升子序列,如(1, 7), (3, 4, 8)等等。这些子序列中最长的长度是4,比如子序列(1, 3, 5, 8).

你的任务,就是对于给定的序列,求出最长上升子序列的长度。

输入
输入的第一行是序列的长度N (1 <= N <= 1000)。第二行给出序列中的N个整数,这些整数的取值范围都在0到10000。
输出
最长上升子序列的长度。

解题思路:
首先我们先明确我们想要解决的问题:如何求出一组最大的上升子序列
然后我们就思考如何将其分成无后效性的子问题。

无后效性:简单来说,就是到达某种状态和它到达这种状态的方法无关。
可参考:https://blog.csdn.net/qq_30137611/article/details/77655707

我们第一种思想很容易就想到将该子序列直接分成几个小序列,然后求出每个小序列的最大子序列,然后将它们拼接在一起就行了。
但这种分法行不行呢?很显然是不行的,因为它不满足无后效性这一点。

为什么不行呢?我们来看看,假设分得的某个子序列为(1, 2 ,5 ,1 ,3),很显然该子序列最大上升子序列的长度为3。
它到达了某种状态:该子序列的最大上升子序列的长度为3。
他到达该状态的途径:该上升子序列可能有多种(1,2,3)或(1,2,5),这对之后的子序列的求最长上生下子序列有影响(右边最大值不同),故不满足无后效性。

所以我们可以运用递推的思想:若我们求得第n个元素为终点的最大上升
子序列的长度的话,若第n+1个元素的值大于第n个元素的值,那么加上第n+1个元素后所组成的子序列为以第n+1个元素为终点的最大上升子序列

主要思想就已经解决,接下来看怎么实现吧。

实现:

输入:

int N,maxlen[1010],num[
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值