在应急救援场景中,快速、高效地覆盖尽可能多的需求点是关键。如何确定最优的救援站点数量,在资源有限的情况下实现最大人口覆盖率?遗传算法作为一种强大的优化工具,为我们提供了科学的解决方案。今天,就让我们通过一段 MATLAB 代码,揭开应急救援站点选址优化的神秘面纱~😉
一、数据准备:构建救援场景的 “基石” 🧱
data = load('dataset.mat');
need = data.need; % 需求站点
supply = data.supply; % 备选救援站点
pop = data.pop; % 人口规模
efftime = pdist2(need, supply); % 计算需求点到备选站点的有效出行时间
数据结构展示
代码首先加载包含需求站点(need
)、备选救援站点(supply
)和人口规模(pop
)的数据集。通过pdist2
计算需求点到每个备选站点的有效出行时间(efftime
),为后续分析奠定基础。
二、遗传算法参数:优化过程的 “指南针” 🧭
maxGenerations = 200; % 最大迭代次数
crossoverRate = 0.8; % 交叉率
mutationRate = 0.3; % 变异率
best_restime = 5; % 最佳救援时间
maxGenerations
:控制遗传算法的迭代次数,数值越大,搜索越充分,但计算成本也越高。crossoverRate
:交叉率决定了个体之间交换基因(站点选择)的概率,较高的交叉率有助于快速探索新的解空间。mutationRate
:变异率让个体基因有机会随机改变,避免算法陷入局部最优。best_restime
:定义救援的最佳时间阈值,需求点在该时间内被覆盖才算有效。
三、遍历供应点个数:寻找最优解的 “探索之旅” 🌍
for numSupplyPoints = 1:40
populationSize = 100; % 每次运行的种群大小
population = zeros(populationSize, size(supply, 1));
for i = 1:populationSize
onesIdx = randperm(size(supply, 1), numSupplyPoints);
population(i, onesIdx) = 1;
end
% 遗传算法主循环
end
通过循环遍历 1 到 40 个供应点个数,每次初始化一个包含 100 个个体的种群。每个个体是一个二进制向量,其中正好有numSupplyPoints
个 1,表示选中的救援站点