从输入中读取一个数n,求出n!中末尾0的个数。
输入格式:
输入有若干行。第一行有一个整数m,指明接下来的个数。然后是m行,每一行包含一个确定的整数n,1<=n<=1000000000。
输出格式:
对输入行中的每一个数据n,输出一行,其内容是n!中末尾0的个数。
输入样例:
3
3
100
1024
输出样例:
0
24
253
代码长度限制 16KB
时间限制 1000ms
内存限制 64MB
解题思路:显然如果直接求n!的值,再数末尾有几个0是非常繁琐的,而且很容易就会超出int或者long的范围并且超时。在这里直接给出最省时间的思路:
由于0的出现本质上是5的偶倍数或者偶数乘上5的倍数得来。
例如:10=2*5,20=4*5,20=2*10
对于10!:
10!= 1*2*3*4*5*6*7*8*9*10
2的倍数有5个。
5的倍数有2个。
所以10!中末尾0的个数有两个。
由于2的倍数要远远比5的倍数多的,所以要数一个阶层中末尾0的个数,就转化成数阶层中*5有几个。
对于30!:
其中5的倍数:5 10 15 20 25 30
1*5 2*5 3*5 4*5 5*5 6*5 不难看出有七个5所以末尾零的个数有7个
对于30/5=6,就可理解为30!中5的倍数有6个,但是25比较特别25 = 5*5,其中有两个5,所以还需知道30!中有几个25的倍数,以此类推125 = 5*5*5,所以要知道30内125的倍数有几个......
所以30!末尾零的个数number= 30/5 + 30/25 + 30/125 = 6 + 1 + 0 = 7;
所以对于求一般n!中末尾零的个数可以写成:
number = n/5 + n/25 + n/125 +n/625 + ......
当然其他方法思路也是正确的,但是会超时,这里就不多介绍了。
理论成立代码如下:
import java.util.Scanner;
public class Main {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int m = sc.nextInt();
int n = 0;
for(int i = 0;i < m;i++) {
n = sc.nextInt();
System.out.println(zero(n));
}
}
public static int zero(int n) {
int number = 0;
while(n > 0) {
n = n/5;
number = number + n;
}
return number;
}
}