【材料计算】分析第一原理的计算结果,包括能带、态密度等

如何分析第一原理的计算结果

在网上看到这个和大家分享一下!参考自百度文库和http://muchong.com/html/201106/3266401.html
如何分析第一原理的计算结果[转]
关键词: 第一原理    计算    结果                                         
如何分析第一原理的计算结果


第一性原理基本概念及应用

    第一性原理,英文First Principle,是一个计算物理或计算化学专业名词,广义的第一性原理计算指的是一切基于量子力学原理的计算。
    我们知道物质由分子组成,分子由原子组成,原子由原子核和电子组成。量子力学计算就是根据原子核和电子的相互作用原理去计算分子结构和分子能量(或离子),然后就能计算物质的各种性质。
    从头算(ab initio)是狭义的第一性原理计算,它是指不使用经验参数,只用电子质量,光速,质子中子质量等少数实验数据去做量子计算。但是这个计算很慢,所以就加入一些经验参数,可以大大加快计算速度,当然也会不可避免的牺牲计算结果精度。
    根据原子核和电子互相作用的原理及其基本运动规律,运用量子力学原理,从具体要求出发,经过一些近似处理后直接求解薛定谔方程的算法,习惯上称为第一性原理。 
    广义的第一原理包括两大类,以Hartree-Fork自洽场计算为基础的ab initio从头算,和密度泛函理论(DFT)计算。也有人主张,ab initio专指从头算,而第一性原理和所谓量子化学计算特指密度泛函理论计算。
   第一性原理通常是跟计算联系在一起的,是指在进行计算的时候除了告诉程序你所使用的原子和他们的位置外,没有其他的实验的,经验的或者半经验的参量,且具有很好的移植性。作为评价事物的依据,第一性原理和经验参数是两个极端。第一性原理是某些硬性规定或推演得出的结论,而经验参数则是通过大量实例得出的规律性的数据,这些数据可以来自第一性原理(称为理论统计数据),也可以来自实验(称为实验统计数据)。[ Last edited by zhaoyuan0426 on 2012-9-21 at 11:20 ]
http://muchong.com/t-4981834-1

MS计算能带图分析

能带图的横坐标是在模型对称性基础上取的K点。为什么要取K点呢?因为晶体的周期性使得薛定谔方程的解也具有了周期性。按照对称性取K点,可以保证以最小的计算量获得最全的能量特征解。能带图横坐标是K点,其实就是倒格空间中的几何点。其中最重要也最简单的就是gamma那个点,因为这个点在任何几何结构中都具有对称性,所以在castep里,有个最简单的K点选择,就是那个gamma选项。纵坐标是能量。那么能带图应该就是表示了研究体系中,各个具有对称性位置的点的能量。我们所得到的体系总能量,应该就是整个体系各个点能量的加和。

记得氢原子的能量线吧?能带图中的能量带就像是氢原子中的每条能量线都拉宽为一个带。通过能带图,能把价带和导带看出来。在castep里,分析能带结构的时候给定scissors这个选项某个值,就可以加大价带和导带之间的空隙,把绝缘体的价带和导带清楚地区分出来。

DOS叫态密度,也就是体系各个状态的密度,各个能量状态的密度。从DOS图也可以清晰地看出带隙、价带、导带的位置。要理解DOS,需要将能带图和DOS结合起来。分析的时候,如果选择了full,就会把体系的总态密度显示出来,如果选择了PDOS,就可以分别把体系的s、p、d、f状态的态密度分别显示出来。还有一点要注意的是,如果在分析的时候你选择了单个原子,那么显示出来的就是这个原子的态密度。否则显示的就是整个体系原子的态密度。要把周期性结构能量由于微扰裂分成各个能带这个概念印在脑袋里。

最后还有一点,这里所有的能带图和DOS的讨论都是针对体系中的所有电子展开的。研究的是体系中所有电子的能量状态。根据量子力学假设,由于原子核的质量远远大于电子,因此奥本海默假设原子核是静止不动的,电子围绕原子核以某一概率在某个时刻出现。我们经常提到的总能量,就是体系电子的总能量。

这些是我看书的体会,不一定准确,大家多多批评啊!

摘要:本文总结了对于第一原理计算工作的结果分析的三个重要方面,以及各自的若干要点用第一原理计算软件开展的工作,分析结果主要是从以下三个方面进行定性/定量的讨论:

1、电荷密度图(charge density);

2、能带结构(Energy Band Structure);

3、态密度(Density of States,简称DOS)。

电荷密度图是以图的形式出现在文章中,非常直观,因此对于一般的入门级研究人员来讲不会有任何的疑问。唯一需要注意的就是这种分析的种种衍生形式,比如差分电荷密图(def-ormation charge density)和二次差分图(difference charge density)等等,加自旋极化的工作还可能有自旋极化电荷密度图(spin-polarized charge density)。所谓“差分”是指原子组成体系(团簇)之后电荷的重新分布,“二次”是指同一个体系化学成分或者几何构型改变之后电荷的重新分布,因此通过这种差分图可以很直观地看出体系中个原子的成键情况。通过电荷聚集(accumulation)/损失(depletion)的具体空间分布,看成键的极性强弱;通过某格点附近的电荷分布形状判断成键的轨道(这个主要是对d轨道的分析,对于s或者p轨道的形状分析我还没有见过)。分析总电荷密度图的方法类似,不过相对而言,这种图所携带的信息量较小。

能带结构分析现在在各个领域的第一原理计算工作中用得非常普遍了。但是因为能带这个概念本身的抽象性,对于能带的分析是让初学者最感头痛的地方。关于能带理论本身,我在这篇文章中不想涉及,这里只考虑已得到的能带,如何能从里面看出有用的信息。首先当然可以看出这个体系是金属、半导体还是绝缘体。判断的标准是看费米能级和导带(也即在高对称点附近近似成开口向上的抛物线形状的能带)是否相交,若相交,则为金属,否则为半导体或者绝缘体。对于本征半导体,还可以看出是直接能隙还是间接能隙:如果导带的最低点和价带的最高点在同一个k点处,则为直接能隙,否则为间接能隙。在具体工作中,情况要复杂得多,而且各种领域中感兴趣的方面彼此相差很大,分析不可能像上述分析一样直观和普适。不过仍然可以总结出一些经验性的规律来。主要有以下几点:

1) 因为目前的计算大多采用超单胞(supercell)的形式,在一个单胞里有几十个原子以及上百个电子,所以得到的能带图往往在远低于费米能级处非常平坦,也非常密集。原则上讲,这个区域的能带并不具备多大的解说/阅读价值。因此,不要被这种现象吓住,一般的工作中,我们主要关心的还是费米能级附近的能带形状。

2) 能带的宽窄在能带的分析中占据很重要的位置。能带越宽,也即在能带图中的起伏越大,说明处于这个带中的电子有效质量越小、非局域(non-local)的程度越大、组成这条能带的原子轨道扩展性越强。如果形状近似于抛物线形状,一般而言会被冠以类sp带(sp-like band)之名。反之,一条比较窄的能带表明对应于这条能带的本征态主要是由局域于某个格点的原子轨道组成,这条带上的电子局域性非常强,有效质量相对较大。

3) 如果体系为掺杂的非本征半导体,注意与本征半导体的能带结构图进行对比,一般而言在能隙处会出现一条新的、比较窄的能带。这就是通常所谓的杂质态(doping state),或者按照掺杂半导体的类型称为受主态或者施主态。

4) 关于自旋极化的能带,一般是画出两幅图:majority spin和minority spin。经典的说,分别代表自旋向上和自旋向下的轨道所组成的能带结构。注意它们在费米能级处的差异。如果费米能级与majority spin的能带图相交而处于minority spin的能隙中,则此体系具有明显的自旋极化现象,而该体系也可称之为半金属(half metal)。因为majority spin与费米能级相交的能带主要由杂质原子轨道组成,所以也可以此为出发点讨论杂质的磁性特征。

5) 做界面问题时,衬底材料的能带图显得非常重要,各高对称点之间有可能出现不同的情况。具体地说,在某两点之间,费米能级与能带相交;而在另外的k的区间上,费米能级正好处在导带和价带之间。这样,衬底材料就呈现出各项异性:对于前者,呈现金属性,而对于后者,呈现绝缘性。因此,有的工作是通过某种材料的能带图而选择不同的面作为生长面。具体的分析应该结合试验结果给出。(如果我没记错的话,物理所薛其坤研究员曾经分析过$\beta$-Fe的(100)和(111)面对应的能带。有兴趣的读者可进一步查阅资料。)

原则上讲,态密度可以作为能带结构的一个可视化结果。很多分析和能带的分析结果可以一一对应,很多术语也和能带分析相通。但是因为它更直观,因此在结果讨论中用得比能带分析更广泛一些。简要总结分析要点如下:

1) 在整个能量区间之内分布较为平均、没有局域尖峰的DOS,对应的是类sp带,表明电子的非局域化性质很强。相反,对于一般的过渡金属而言,d轨道的DOS一般是一个很大的尖峰,说明d电子相对比较局域,相应的能带也比较窄。

2) 从DOS图也可分析能隙特性:若费米能级处于DOS值为零的区间中,说明该体系是半导体或绝缘体;若有分波DOS跨过费米能级,则该体系是金属。此外,可以画出分波(PDOS)和局域(LDOS)两种态密度,更加细致的研究在各点处的分波成键情况。

3) 从DOS图中还可引入“赝能隙”(pseudogap)的概念。也即在费米能级两侧分别有两个尖峰。而两个尖峰之间的DOS并不为零。赝能隙直接反映了该体系成键的共价性的强弱:越宽,说明共价性越强。如果分析的是局域态密度(LDOS),那么赝能隙反映的则是相邻两个原子成键的强弱:赝能隙越宽,说明两个原子成键越强。上述分析的理论基础可从紧束缚理论出发得到解释:实际上,可以认为赝能隙的宽度直接和Hamiltonian矩阵的非对角元相关,彼此间成单调递增的函数关系。

4) 对于自旋极化的体系,与能带分析类似,也应该将majority spin和minority spin分别画出,若费米能级与majority的DOS相交而处于minority的DOS的能隙之中,可以说明该体系的自旋极化。

5) 考虑LDOS,如果相邻原子的LDOS在同一个能量上同时出现了尖峰,则我们将其称之为杂化峰(hybridized peak),这个概念直观地向我们展示了相邻原子之间的作用强弱。

以上是本人基于文献调研所总结的一些关于第一原理工作的结果分析要点。期冀能对刚进入这个领域内的科研工作者有所启发。受本人的水平所限,文章的内容可能会有理论上的不足甚至错误之处,希望大家指出,共同发展第一原理计算物理的方法和研究内容。

smering是什么意思

我个人的理解是这样的:由于金属的能带有可能穿越fermi能级,从而引起总能计算时的不连续变化(这个我不知道为什么?)。为了避免这种情况,需要引入分数的占据态。在castep中0k下的计算,是将单电子能级采用Gaussian函数展宽,展开宽度就是smearing width。然而,由于展宽了单电子能级相当于增加了有限的温度,所以必须修正以得到0k下的结果。另外,smearing的另一个作用是可以增加总能计算的收敛性。

 


用第一原理计算软件开展的工作,分析结果主要是从以下三个方面进行定性/定量的讨论:
  1、电荷密度图(charge density);
  2、能带结构(Energy Band Structure);
  3、态密度(Density of States,简称DOS)。
  
   电荷密度图是以图的形式出现在文章中,非常直观,因此对于一般的入门级研究人员来讲
  不会有任何的疑问。唯一需要注意的就是这种分析的种种衍生形式,比如差分电荷密图(def-ormation charge density)和二次差分图(difference charge density)等等,加自旋极化的工作还可能有自旋极化电荷密度图(spin-polarized charge density)。所谓“差分”
  是指原子组成体系(团簇)之后电荷的重新分布,“二次”是指同一个体系化学成分或者几何构型改变之后电荷的重新分布,因此通过这种差分图可以很直观地看出体系中个原子的成键情况。通过电荷聚集(accumulation)/损失(depletion)的具体空间分布,看成键的极性强弱;通过某格点附近的电荷分布形状判断成键的轨道(这个主要是对d轨道的分析,对于s或者p轨道的形状分析我还没有见过)。分析总电荷密度图的方法类似,不过相对而言,这种图所携带的信息量较小。

   能带结构分析现在在各个领域的第一原理计算工作中用得非常普遍了。但是因为能带这个
  概念本身的抽象性,对于能带的分析是让初学者最感头痛的地方。关于能带理论本身,我在这篇文章中不想涉及,这里只考虑已得到的能带,如何能从里面看出有用的信息。首先当然可以看出这个体系是金属、半导体还是绝缘体。判断的标准是看费米能级和导带(也即在高对称点附近近似成开口向上的抛物线形状的能带)是否相交,若相交,则为金属,否则为半导体或者绝缘体。对于本征半导体,还可以看出是直接能隙还是间接能隙:如果导带的最低点和价带的最高点在同一个k点处,则为直接能隙,否则为间接能隙。在具体工作中,情况要复杂得多,而且各种领域中感兴趣的方面彼此相差很大,分析不可能像上述分析一样直观和普适。不过仍然可以总结出一些经验性的规律来。主要有以下几点:
   1) 因为目前的计算大多采用超单胞(supercell)的形式,在一个单胞里有几十个原子
   以及上百个电子,所以得到的能带图往往在远低于费米能级处非常平坦,也非常密
   集。原则上讲,这个区域的能带并不具备多大的解说/阅读价值。因此,不要被这种
   现象吓住,一般的工作中,我们主要关心的还是费米能级附近的能带形状。
  
   2) 能带的宽窄在能带的分析中占据很重要的位置。能带越宽,也即在能带图中的起伏越
   大,说明处于这个带中的电子有效质量越小、非局域(non-local)的程度越大、组
   成这条能带的原子轨道扩展性越强。如果形状近似于抛物线形状,一般而言会被冠以
   类sp带(sp-like band)之名。反之,一条比较窄的能带表明对应于这条能带的本征
   态主要是由局域于某个格点的原子轨道组成,这条带上的电子局域性非常强,有效质
   量相对较大。
  
   3) 如果体系为掺杂的非本征半导体,注意与本征半导体的能带结构图进行对比,一般而
   言在能隙处会出现一条新的、比较窄的能带。这就是通常所谓的杂质态(doping
   state),或者按照掺杂半导体的类型称为受主态或者施主态。
  
   4) 关于自旋极化的能带,一般是画出两幅图:majority spin和minority spin。经典的
   说,分别代表自旋向上和自旋向下的轨道所组成的能带结构。注意它们在费米能级处
   的差异。如果费米能级与majority spin的能带图相交而处于minority spin的能隙
   中,则此体系具有明显的自旋极化现象,而该体系也可称之为半金属(half
   metal)。因为majority spin与费米能级相交的能带主要由杂质原子轨道组成,所以
   也可以此为出发点讨论杂质的磁性特征。
  
   5) 做界面问题时,衬底材料的能带图显得非常重要,各高对称点之间有可能出现不同的
   情况。具体地说,在某两点之间,费米能级与能带相交;而在另外的k的区间上,费
   米能级正好处在导带和价带之间。这样,衬底材料就呈现出各项异性:对于前者,呈
   现金属性,而对于后者,呈现绝缘性。因此,有的工作是通过某种材料的能带图而选
   择不同的面作为生长面。具体的分析应该结合试验结果给出。(如果我没记错的话,
   物理所薛其坤研究员曾经分析过$\beta$-Fe的(100)和(111)面对应的能带。有兴趣的
   读者可进一步查阅资料。)
  
   原则上讲,态密度可以作为能带结构的一个可视化结果。很多分析和能带的分析结果可以
  一一对应,很多术语也和能带分析相通。但是因为它更直观,因此在结果讨论中用得比能带分析更广泛一些。简要总结分析要点如下:
   1) 在整个能量区间之内分布较为平均、没有局域尖峰的DOS,对应的是类sp带,表明电
   子的非局域化性质很强。相反,对于一般的过渡金属而言,d轨道的DOS一般是一个很
   大的尖峰,说明d电子相对比较局域,相应的能带也比较窄。
  
   2) 从DOS图也可分析能隙特性:若费米能级处于DOS值为零的区间中,说明该体系是半导体或绝缘体;若有分波DOS跨过费米能级,则该体系是金属。此外,可以画出分波
   (PDOS)和局域(LDOS)两种态密度,更加细致的研究在各点处的分波成键情况。
  
   3) 从DOS图中还可引入“赝能隙”(pseudogap)的概念。也即在费米能级两侧分别有两个尖峰。而两个尖峰之间的DOS并不为零。赝能隙直接反映了该体系成键的共价性的
   强弱:越宽,说明共价性越强。如果分析的是局域态密度(LDOS),那么赝能隙反映
   的则是相邻两个原子成键的强弱:赝能隙越宽,说明两个原子成键越强。上述分析的
   理论基础可从紧束缚理论出发得到解释:实际上,可以认为赝能隙的宽度直接和
   Hamiltonian矩阵的非对角元相关,彼此间成单调递增的函数关系。
  
   4) 对于自旋极化的体系,与能带分析类似,也应该将majority spin和minority spin分
   别画出,若费米能级与majority的DOS相交而处于minority的DOS的能隙之中,可以说
   明该体系的自旋极化。
  
   5) 考虑LDOS,如果相邻原子的LDOS在同一个能量上同时出现了尖峰,则我们将其称之为杂化峰(hybridized peak),这个概念直观地向我们展示了相邻原子之间的作用强弱。
  
   以上是本人基于文献调研所总结的一些关于第一原理工作的结果分析要点。期冀能对刚进
  入这个领域内的科研工作者有所启发。受本人的水平所限,文章的内容可能会有理论上的不足
  甚至错误之处,希望大家指出,共同发展第一原理计算物理的方法和研究内容。

 发表于: 2008-05-03,修改于: 2008-05-03 19:58已浏览1468次,有评论1推荐投诉

 

参与评论 您还未登录,请先 登录 后发表或查看评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
©️2022 CSDN 皮肤主题:大白 设计师:CSDN官方博客 返回首页
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值