【BZOJ1087】【codevs2451】互不侵犯,状压DP

传送门1
传送门2
写在前面:第一次写状压DP,感觉还好,至少比数论好些,还有就是让我膜一发位运算……
思路:一看数据范围n<=9而且是省选,就知道这个题九成是状态压缩,题目限制条件与上一行的摆放情况有关,所以这里通过把上一行的国王摆放状态转化为2进制,为0~511,通过511*511的预处理把各二进制数之间的关系求出来,这里是对行与行之间的判断,还要把每一行之中的情况进行预处理,然后就差不多可以DP转移了
f[i][j][p]=sigma(f[i-1][j-num(p)][q]) (num(p)为p的二进制中1的个数,我的代码中是直接打了表的)i为行数,j为已经摆放的国王,p为当前第i行的摆放情况,这里要求p,q均合法且p,q之间不存在攻击状况.
注意:
1.带有位运算的语句括号很重要!真的很重要!
2.多用位运算处理状压DP中的抵触情况,很方便的
代码:

#include"bits/stdc++.h"
#define LL long long
using namespace std;
int n,k,num[513]={0,1,1,2,1,2,2,3,1,2,2,3,2,3,3,4,1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7,1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7,3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7,4,5,5,6,5,6,6,7,5,6,6,7,6,7,7,8,1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7,3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7,4,5,5,6,5,6,6,7,5,6,6,7,6,7,7,8,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7,3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7,4,5,5,6,5,6,6,7,5,6,6,7,6,7,7,8,3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7,4,5,5,6,5,6,6,7,5,6,6,7,6,7,7,8,4,5,5,6,5,6,6,7,5,6,6,7,6,7,7,8,5,6,6,7,6,7,7,8,6,7,7,8,7,8,8,9};
bool flag2[512][512],flag1[513];//分别判断行与行之间的关系与每一行之中的关系
LL f[10][90][520],ans;
bool pd(int i,int j)
{
    if(((i&j)==0)&&((i&(j>>1))==0)&&((j&(i>>1))==0)) return 1;//挺神的位运算判断两摆放情况是否抵触,刚开始我是把每个数拆出来了Orz
    else return 0;
}
main()
{
    scanf("%d%d",&n,&k);
    for (int i=0;i<=(1<<n)-1;i++) 
    if ((i&(i>>1))==0) flag1[i]=1;//同样神奇的位运算

    for (int i=0;i<=(1<<n)-1;i++)
    if (flag1[i])
    for (int j=0;j<=(1<<n)-1;j++)
    if (flag1[j])
    flag2[i][j]=pd(i,j);

    f[0][0][0]=1;

    for (int i=1;i<=n;i++)
    for (int j=0;j<=min(k,n*i);j++)
    for (int p=0;p<=(1<<n)-1;p++)
    if (flag1[p]&&j-num[p]>=0)
    for (int q=0;q<=(1<<n)-1;q++)
    if (flag1[q]&&flag2[p][q])
    f[i][j][p]+=f[i-1][j-num[p]][q];
    for (int i=0;i<=(1<<n)-1;i++)
    ans+=f[n][k][i];
    printf("%lld",ans);
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值