传送门
思路:
用来练习cdq的题目
断断续续纠结了2天
因为loli一直在考试
最后莫名乱搞了一发就A了?
实际上是考虑每一次修改对答案的贡献,即位置在1~x-1且大于x的数以及位置在x+1~n且小于x的数
为了方便考虑,我把”删除前”倒过来变成了”插入后”,并且是把所有的元素都插入进来
用分治+树状数组把贡献算出来
然后这些插入的前缀和就是真实的答案,按给定顺序输出即可
由于太弱+理解不深
本来很简单的一道题硬是搞了好久
好在是自己做出来了
由于方法比较奇葩,跑了接近2s,是比较慢的了
时间复杂度:
空间复杂度: O(n)
CDQ分治代码:
#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
#define LL long long
#define M 100006
using namespace std;
int n,m;
LL sum[M];
int a[M],opt[M],d[M],pos[M];
bool vis[M];
struct node{
int pos,val,tp,id;
bool operator <(const node other)const
{
return pos<other.pos;
}
}b[M];
int in()
{
int t=0;char ch=getchar();
while (ch>'9'||ch<'0') ch=getchar();
while (ch>='0'&&ch<='9') t=(t<<1)+(t<<3)+ch-48,ch=getchar();
return t;
}
void update(int x,int val){for(;x<=n;x+=(x&-x))d[x]+=val;}
int get(int x)
{
int t=0;
for (;x;x-=(x&-x)) t+=d[x];
return t;
}
void solve(int l,int r)
{
if (l==r) return;
int mid=l+r>>1;
solve(l,mid);
int cnt=0;
for (int i=l;i<=mid;++i)
b[++cnt]=(node){pos[opt[i]],opt[i],0,i};
for (int i=mid+1;i<=r;++i)
b[++cnt]=(node){pos[opt[i]],opt[i],1,i};
sort(b+1,b+cnt+1);
for (int i=1;i<=cnt;++i)
if (b[i].tp)
sum[b[i].id]+=get(n)-get(b[i].val);
else
update(b[i].val,1);
for (int i=1;i<=cnt;++i)
if (!b[i].tp)
update(b[i].val,-1);
for (int i=cnt;i>=1;--i)
if (b[i].tp)
sum[b[i].id]+=get(b[i].val);
else
update(b[i].val,1);
for (int i=cnt;i>=1;--i)
if (!b[i].tp)
update(b[i].val,-1);
solve(mid+1,r);
}
main()
{
n=in();m=in();
for (int i=1;i<=n;++i)
a[i]=in(),
pos[a[i]]=i;
int p=m;
for (int i=1;i<=m;++i)
opt[i]=in(),
vis[opt[i]]=1;
for (int i=1;i<=n;++i)
if (!vis[i])
opt[++m]=i;
for (int i=1;i<=m>>1;++i) swap(opt[i],opt[m-i+1]);
solve(1,m);
for (int i=1;i<=m;++i) sum[i]+=sum[i-1];
for (int i=m;i>=m-p+1;--i) printf("%lld\n",sum[i]);
}
只有这点东西,显然我是不会写一篇博客的
其实第一个容易想到的做法是树套树
(因为是对某一区间内满足条件的数进行修改与查询)
具体思想和上面的cdq是类似的
我一开始想到的是区间线段树套权值线段树,后来考虑到自己的大常数又改成了BIT套权值线段树
时间复杂度:
O(nlog2n)
空间复杂度:
O(nlog2n)
之前出现了错误,没有认真算空间,写成了
O(nlogn)
,实际上每次修改,树状数组访问
logn
个节点,每次访问要扩展
logn
个节点,所以空间复杂度是
O(nlog2n)
,多谢shallwe打野提醒
感觉这个要比cdq好写?
尽管如此,在BZ还是跑了7s整,cogs上T了两个点
所以感受一下就好了……
BIT套权值线段树(TLE)代码:
#include<cstdio>
#include<iostream>
#include<cstring>
#define M 100003
#define LL long long
using namespace std;
int n,m,cnt;
int root[M],pos[M],a[M],opt[M];
bool vis[M];
LL ans[M];
int in()
{
int t=0;char ch=getchar();
while (ch>'9'||ch<'0') ch=getchar();
while (ch>='0'&&ch<='9') t=(t<<1)+(t<<3)+ch-48,ch=getchar();
return t;
}
namespace Seg
{
int tr[M*90],ls[M*90],rs[M*90];
void update(int rt,int begin,int end,int pos)
{
++tr[rt];
if (begin==end) return;
int mid=(begin+end)>>1;
if (pos<=mid)
{
if (!ls[rt]) ls[rt]=++cnt;
update(ls[rt],begin,mid,pos);
}
else
{
if (!rs[rt]) rs[rt]=++cnt;
update(rs[rt],mid+1,end,pos);
}
}
int get(int rt,int begin,int end,int l,int r)
{
if (!rt) return 0;
if (l<=begin&&end<=r) return tr[rt];
int mid=(begin+end>>1),ans=0;
if (mid>=l) ans+=get(ls[rt],begin,mid,l,r);
if (mid<r) ans+=get(rs[rt],mid+1,end,l,r);
return ans;
}
}
namespace BIT//维护某一个前缀内的权值情况
{
void update(int x,int val)
{
for (;x<=n;x+=(x&-x))
{
if (!root[x]) root[x]=++cnt;
Seg::update(root[x],1,n,val);
}
}
int get(int x,int l,int r)
{
int t=0;
for (;x;x-=(x&-x))
t+=Seg::get(root[x],1,n,l,r);
return t;
}
}
main()
{
n=in();m=in();
for (int i=1;i<=n;++i) pos[a[i]=in()]=i;
for (int i=1;i<=m;++i) vis[opt[i]=in()]=1;
int p=m;
for (int i=1;i<=n;++i)
if (!vis[i])
opt[++m]=i;
for (int i=1;i<=m>>1;++i) swap(opt[i],opt[m-i+1]);
for (int i=1;i<=m;++i)
BIT::update(pos[opt[i]],opt[i]),
ans[i]=BIT::get(pos[opt[i]]-1,opt[i],n)-BIT::get(pos[opt[i]],1,opt[i])+BIT::get(n,1,opt[i]);
for (int i=1;i<=m;++i) ans[i]+=ans[i-1];
for (int i=m;i>=m-p+1;--i) printf("%lld\n",ans[i]);
}