【BZOJ3295】动态逆序对,CDQ分治/BIT套权值线段树

传送门
思路:
用来练习cdq的题目
断断续续纠结了2天
因为loli一直在考试
最后莫名乱搞了一发就A了?
实际上是考虑每一次修改对答案的贡献,即位置在1~x-1且大于x的数以及位置在x+1~n且小于x的数
为了方便考虑,我把”删除前”倒过来变成了”插入后”,并且是把所有的元素都插入进来
用分治+树状数组把贡献算出来
然后这些插入的前缀和就是真实的答案,按给定顺序输出即可
由于太弱+理解不深
本来很简单的一道题硬是搞了好久
好在是自己做出来了
由于方法比较奇葩,跑了接近2s,是比较慢的了
时间复杂度:

T(n)=2T(n2)+O(nlogn)=O(nlog2n)

空间复杂度: O(n)
CDQ分治代码:

#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
#define LL long long
#define M 100006
using namespace std;
int n,m;
LL sum[M];
int a[M],opt[M],d[M],pos[M];
bool vis[M];
struct node{
    int pos,val,tp,id;
    bool operator <(const node other)const
    {
        return pos<other.pos;
    }
}b[M];
int in()
{
    int t=0;char ch=getchar();
    while (ch>'9'||ch<'0') ch=getchar();
    while (ch>='0'&&ch<='9') t=(t<<1)+(t<<3)+ch-48,ch=getchar();
    return t;
}
void update(int x,int val){for(;x<=n;x+=(x&-x))d[x]+=val;}
int get(int x)
{
    int t=0;
    for (;x;x-=(x&-x)) t+=d[x];
    return t;
}
void solve(int l,int r)
{
    if (l==r) return;
    int mid=l+r>>1;
    solve(l,mid);
    int cnt=0;
    for (int i=l;i<=mid;++i)
        b[++cnt]=(node){pos[opt[i]],opt[i],0,i};
    for (int i=mid+1;i<=r;++i)
        b[++cnt]=(node){pos[opt[i]],opt[i],1,i};
    sort(b+1,b+cnt+1);
    for (int i=1;i<=cnt;++i)
        if (b[i].tp)
            sum[b[i].id]+=get(n)-get(b[i].val);
        else
            update(b[i].val,1);
    for (int i=1;i<=cnt;++i)
        if (!b[i].tp)
            update(b[i].val,-1);
    for (int i=cnt;i>=1;--i)
        if (b[i].tp)
            sum[b[i].id]+=get(b[i].val);
        else
            update(b[i].val,1);
    for (int i=cnt;i>=1;--i)
        if (!b[i].tp)
            update(b[i].val,-1);
    solve(mid+1,r);
}
main()
{
    n=in();m=in();
    for (int i=1;i<=n;++i)
        a[i]=in(),
        pos[a[i]]=i;
    int p=m;
    for (int i=1;i<=m;++i)
        opt[i]=in(),
        vis[opt[i]]=1;
    for (int i=1;i<=n;++i)
        if (!vis[i])
            opt[++m]=i;
    for (int i=1;i<=m>>1;++i) swap(opt[i],opt[m-i+1]);
    solve(1,m);
    for (int i=1;i<=m;++i) sum[i]+=sum[i-1];
    for (int i=m;i>=m-p+1;--i) printf("%lld\n",sum[i]);
}

只有这点东西,显然我是不会写一篇博客的
其实第一个容易想到的做法是树套树
(因为是对某一区间内满足条件的数进行修改与查询)
具体思想和上面的cdq是类似的
我一开始想到的是区间线段树套权值线段树,后来考虑到自己的大常数又改成了BIT套权值线段树
时间复杂度: O(nlog2n)
空间复杂度: O(nlog2n)
之前出现了错误,没有认真算空间,写成了 O(nlogn) ,实际上每次修改,树状数组访问 logn 个节点,每次访问要扩展 logn 个节点,所以空间复杂度是 O(nlog2n) ,多谢shallwe打野提醒
感觉这个要比cdq好写?
尽管如此,在BZ还是跑了7s整,cogs上T了两个点
这里写图片描述
所以感受一下就好了……
BIT套权值线段树(TLE)代码:

#include<cstdio>
#include<iostream>
#include<cstring> 
#define M 100003
#define LL long long
using namespace std;
int n,m,cnt;
int root[M],pos[M],a[M],opt[M];
bool vis[M];
LL ans[M];
int in()
{
    int t=0;char ch=getchar();
    while (ch>'9'||ch<'0') ch=getchar();
    while (ch>='0'&&ch<='9') t=(t<<1)+(t<<3)+ch-48,ch=getchar();
    return t;
}
namespace Seg
{
    int tr[M*90],ls[M*90],rs[M*90];
    void update(int rt,int begin,int end,int pos)
    {
        ++tr[rt];
        if (begin==end) return;
        int mid=(begin+end)>>1;
        if (pos<=mid)
        {
            if (!ls[rt]) ls[rt]=++cnt;
            update(ls[rt],begin,mid,pos);
        }
        else
        {
            if (!rs[rt]) rs[rt]=++cnt;
            update(rs[rt],mid+1,end,pos);
        }
    }
    int get(int rt,int begin,int end,int l,int r)
    {
        if (!rt) return 0;
        if (l<=begin&&end<=r) return tr[rt];
        int mid=(begin+end>>1),ans=0;
        if (mid>=l) ans+=get(ls[rt],begin,mid,l,r);
        if (mid<r) ans+=get(rs[rt],mid+1,end,l,r);
        return ans;
    }
}
namespace BIT//维护某一个前缀内的权值情况 
{
    void update(int x,int val)
    {
        for (;x<=n;x+=(x&-x))
        { 
            if (!root[x]) root[x]=++cnt;
            Seg::update(root[x],1,n,val);
        }
    }
    int get(int x,int l,int r)
    {
        int t=0;
        for (;x;x-=(x&-x))
            t+=Seg::get(root[x],1,n,l,r);
        return t;
    }
}
main()
{
    n=in();m=in();
    for (int i=1;i<=n;++i) pos[a[i]=in()]=i;
    for (int i=1;i<=m;++i) vis[opt[i]=in()]=1;
    int p=m;
    for (int i=1;i<=n;++i)
        if (!vis[i])
            opt[++m]=i;
    for (int i=1;i<=m>>1;++i) swap(opt[i],opt[m-i+1]);
    for (int i=1;i<=m;++i)
        BIT::update(pos[opt[i]],opt[i]),
        ans[i]=BIT::get(pos[opt[i]]-1,opt[i],n)-BIT::get(pos[opt[i]],1,opt[i])+BIT::get(n,1,opt[i]);
    for (int i=1;i<=m;++i) ans[i]+=ans[i-1];
    for (int i=m;i>=m-p+1;--i) printf("%lld\n",ans[i]);
}
weixin073智慧旅游平台开发微信小程序+ssm后端毕业源码案例设计 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。
python017基于Python贫困生资助管理系统带vue前后端分离毕业源码案例设计 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值