6月27日 夜 堕落

  看了篇文章,说我们一代的是堕落的一代。。。没有看完,猛然间自问是啥时候堕落的?

  高三?那时候天天逃课,是迷茫?

  大一不去上课,网吧早去夜归,是默然、迷茫。

  大二,逃课挂课被处分了,迷茫!随之而来的更是无聊,于是翻了很多书,就学起了计算机。。。

  本以为自此不再堕落,可是毕业之日,我每当问起自己想干什么喜欢什么的时候却不能回答自己的问题。理想是虚幻的,自小也许就没有过,也或许是什么时候消失了。计算机也许就是寄托,也许我真的喜欢她,却因为在其中不会找到自己的价值,就准备丢掉他,价值?钱在着社会就是价值,呵呵,人的价值就是靠这个衡量的。

  啥时候知道钱的?不清楚,只依稀的记得不知道是谁关进我的脑子,钱是王道。

  也许就是那个时候我迷失的,我迷茫的,我失去了理想,我失去了兴趣,失去对科学的信仰。

  当我们失去这些的时候是啥?行尸走肉?亵渎中的遗弃之地成因的现实版,我无血的亡灵。

 很早就知道社会造就人,而时至今日才明白、理解这句话的真正含义,自改革开放的那一天,也许这就是注定的了,先有舆论导向,后有数字英雄,明有纵横商场,横行天下的企业家,暗有暗渡陈仓,全术一流的贪官污吏,钱,注定阿。

  我不像怨天尤人,我不像斥责社会,我不像骂xxd,我不想为自己辩护,我堕落我承认,可我想说 我不想,说我们的,骂我们的,请注意你们在其中的位置。罪魁祸首是谁有点大脑的人都清楚。

  也许促进发展的代价吧!万物本不能调和!我们惟有迫近!

  本文纯属泄愤!

 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
目标检测(Object Detection)是计算机视觉领域的一个核心问题,其主要任务是找出图像中所有感兴趣的目标(物体),并确定它们的类别和位置。以下是对目标检测的详细阐述: 一、基本概念 目标检测的任务是解决“在哪里?是什么?”的问题,即定位出图像中目标的位置并识别出目标的类别。由于各类物体具有不同的外观、形状和姿态,加上成像时光照、遮挡等因素的干扰,目标检测一直是计算机视觉领域最具挑战性的任务之一。 二、核心问题 目标检测涉及以下几个核心问题: 分类问题:判断图像中的目标属于哪个类别。 定位问题:确定目标在图像中的具体位置。 大小问题:目标可能具有不同的大小。 形状问题:目标可能具有不同的形状。 三、算法分类 基于深度学习的目标检测算法主要分为两大类: Two-stage算法:先进行区域生成(Region Proposal),生成有可能包含待检物体的预选框(Region Proposal),再通过卷积神经网络进行样本分类。常见的Two-stage算法包括R-CNN、Fast R-CNN、Faster R-CNN等。 One-stage算法:不用生成区域提议,直接在网络中提取特征来预测物体分类和位置。常见的One-stage算法包括YOLO系列(YOLOv1、YOLOv2、YOLOv3、YOLOv4、YOLOv5等)、SSD和RetinaNet等。 四、算法原理 以YOLO系列为例,YOLO将目标检测视为回归问题,将输入图像一次性划分为多个区域,直接在输出层预测边界框和类别概率。YOLO采用卷积网络来提取特征,使用全连接层来得到预测值。其网络结构通常包含多个卷积层和全连接层,通过卷积层提取图像特征,通过全连接层输出预测结果。 五、应用领域 目标检测技术已经广泛应用于各个领域,为人们的生活带来了极大的便利。以下是一些主要的应用领域: 安全监控:在商场、银行
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值