The 3n + 1 problem
Problem Description
Problems in Computer Science are often classified as belonging to a certain class of problems (e.g., NP, Unsolvable, Recursive). In this problem you will be analyzing a property of an algorithm whose classification is not known for all possible inputs.
Consider the following algorithm:
1. input n
2. print n
3. if n = 1 then STOP
4. if n is odd then n <- 3n + 1
5. else n <- n / 2
6. GOTO 2
Given the input 22, the following sequence of numbers will be printed 22 11 34 17 52 26 13 40 20 10 5 16 8 4 2 1
It is conjectured that the algorithm above will terminate (when a 1 is printed) for any integral input value. Despite the simplicity of the algorithm, it is unknown whether this conjecture is true. It has been verified, however, for all integers n such that 0 < n < 1,000,000 (and, in fact, for many more numbers than this.)
Given an input n, it is possible to determine the number of numbers printed (including the 1). For a given n this is called the cycle-length of n. In the example above, the cycle length of 22 is 16.
For any two numbers i and j you are to determine the maximum cycle length over all numbers between i and j.
Input
The input will consist of a series of pairs of integers i and j, one pair of integers per line. All integers will be less than 1,000,000 and greater than 0.
You should process all pairs of integers and for each pair determine the maximum cycle length over all integers between and including i and j.
You can assume that no opperation overflows a 32-bit integer.
Output
For each pair of input integers i and j you should output i, j, and the maximum cycle length for integers between and including i and j. These three numbers should be separated by at least one space with all three numbers on one line and with one line of output for each line of input. The integers i and j must appear in the output in the same order in which they appeared in the input and should be followed by the maximum cycle length (on the same line).
Sample Input
1 10
100 200
201 210
900 1000
Sample Output
1 10 20
100 200 125
201 210 89
900 1000 174
题目意思很简单,让你求i->j
中长度最长的,我们可以在算的过程中把长度记录下来,然后没了。
不过这题i
和j
是比较坑的,如果i>j
的话,是需要交换的,但是输出还是按输入的值来输出。
#include <algorithm>
#include <cmath>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <list>
#include <map>
#include <queue>
#include <set>
#include <stack>
#include <string>
#include <vector>
using namespace std;
typedef long long ll;
const int N = 1e6 + 10;
const int INF = 0x3f3f3f3f;
int max(int a, int b) { return a > b ? a : b; }
int min(int a, int b) { return a > b ? b : a; }
const double eps = 1e-7;
#define endl '\n'
#define pb(a) push_back(a)
#define ALL(x) x.begin(), x.end()
int ans[N];
void solve(int x) {
int tmp = x;
while (x != 1) {
if (x & 1)
x = 3 * x + 1;
else
x /= 2;
ans[tmp]++;
}
}
int main() {
// ios::sync_with_stdio(false);
int a, b;
while (~scanf("%d%d", &a, &b)) {
int m = 0;
int t1 = a, t2 = b;
if (a > b) swap(a, b);
for (int i = a; i <= b; ++i) {
if (!ans[i]) {
solve(i);
}
m = max(m, ans[i]);
}
printf("%d %d %d\n", t1, t2, m + 1);
}
return 0;
}