machine-learning
xyqzki
wahahahaahahahahah
展开
-
注意符号的写法。 随机变量直接写成p(x|z), 而未知的常量要用逗号p(x|z; \theta)
RT原创 2015-05-20 17:22:54 · 2042 阅读 · 0 评论 -
Barrier Function for constrained optimization problem
Given minf(a,b,Σ)\min f(a, b, \Sigma) s.t.a>0,b>0,Σ∈pds.t. a > 0, b>0, \Sigma \in pdwe can utilize the barrier function to prevent the a and b not to be negative, and Σ\Sigma to be pd.add the barri原创 2015-11-05 15:37:57 · 683 阅读 · 0 评论 -
Matrix Decomposition / Factorization 相关重点 (特征值特征向量)
General but ImportantGiven a matrix, ask yourself, is it square matrix? is it symmetric? eigenvectors are orthonormal for distinct eigenvalues can be decomposed? Eigendecomposed? SVD? How about is eige原创 2015-09-12 21:49:27 · 768 阅读 · 0 评论 -
AUC---Binary classifier metric
ref: http://meroa.com/auc-awk-src/ http://alexkong.net/2013/06/introduction-to-auc-and-roc/ROC曲线分类器的评价与分类器本身同样重要。把分类器的性能映射到ROC(Receiver Operating Characteristic)空间,是一种常用的评价分类器的方法。ROC曲线横轴是FPR(False Pos转载 2015-09-09 22:04:11 · 2201 阅读 · 0 评论 -
注意mutual information & pointwise mutual information
For random variable X and Y, to measure the mutual dependence, more general than the correlation. MI is the expected value of the PMI原创 2015-09-09 16:45:06 · 1465 阅读 · 0 评论 -
BN Topic Model 中如何判断conditional independence p(x,y|z)
use the bayes ball methodhttp://www.cs.ubc.ca/~murphyk/Bayes/bnintro.htmlIn general, the conditional independence relationships encoded by a Bayes Net are best be explained by means of the “Bayes Ball”转载 2015-08-24 17:13:54 · 1258 阅读 · 0 评论 -
EM 个人理解
什么时候用EM对概率模型做parameter estimation 的时候,通常可以用point estimation, MLE, MAP或者bayesian estimation(把parameter看成随机变量).Typically, 对于MLE或者MAP, 如果碰到了隐变量hidden variable, e.g. z in GMM, 就必须用EM, E步算Q M步算 新的参数 NoteEM原创 2015-05-19 23:24:46 · 442 阅读 · 0 评论 -
统计中parameter estimation 的方法总结。Topic Model需要注意的
个人总结:统计中参数估计有四种方法点估计MLEMAP 加入参数的prior 信息,可以避免overfitting,还可以加入extra knowledge。称为Occam’razor Bayesian Inference这种方法不像MLE,MAP将参数看成未知的常量,而是看成随机变量,求出其后验分布的具体形式p(θ|X)p(\theta|X),然后用E(θ|X)E(\theta|X)作为估计值。通常原创 2015-05-20 22:21:21 · 2496 阅读 · 0 评论 -
LDA中的variational EM 跟EM
variational EM: http://net.pku.edu.cn/~zhaoxin/vEMLDA.pdfEM: http://www.cnblogs.com/biyeymyhjob/archive/2012/07/21/2603020.html估计方法都是用的MLE, variational EM 估计α\alpha和β\beta(对应EM中的zz),e而实际上也要求的是θ\theta原创 2015-05-20 22:55:52 · 1745 阅读 · 0 评论 -
协方差矩阵性质 covariance matrix
ref:eigen vectorhttp://www.quora.com/What-is-an-eigenvector-of-a-covariance-matrixgeometric interpretationhttp://www.visiondummy.com/2014/04/geometric-interpretation-covariance-matrix/好网站http://www.vis原创 2015-05-20 16:46:42 · 3482 阅读 · 0 评论 -
PCA, Factor Analysis, LDA
参考 http://www.cnblogs.com/jerrylead/archive/2011/05/11/2043317.html转载 2015-05-20 16:47:22 · 680 阅读 · 0 评论 -
PCA, Factor Analysis, regression related
参考http://www.cnblogs.com/jerrylead/archive/2011/05/11/2043317.htmlhttp://blog.csdn.net/puqutogether/article/details/43055633http://blog.csdn.net/puqutogether/article/details/40889719regression problem原创 2015-05-20 22:10:41 · 564 阅读 · 0 评论 -
KL Divergence between two multivariate normal distributions(使用了trace 和Expection的性质)
http://stats.stackexchange.com/questions/60680/kl-divergence-between-two-multivariate-gaussiansI give a detailed derivation process for the KL Divergence between two multivariate normal distributions.原创 2015-10-29 12:58:43 · 4502 阅读 · 0 评论