自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(7)
  • 收藏
  • 关注

原创 CASSI论文学习(六)——Self-supervised Neural Networks for Spectral Snapshot Compressive Imaging

基于深度学习算法:对于有监督算法来说,虽然重建效果好,但是存在如下几个缺点:1、网络的泛化能力受限。因为存在的训练数据有限,比如高光谱训练数据中有些光谱不存在,导致无法很好地重建数据立方体。此外,由于掩模(调制模式)的不同设计,训练好的cnn不能用于其他系统。开发了一个将DIP( deep image priors)应用到PnP( plug-and-play)中的框架,即一个用于解决光谱SCI重建的自监督网络。传统基于优化的算法:迭代速度慢,质量低,且手工先验(基于稀疏、低秩以及TV等)不适用于所有数据。

2023-07-12 12:12:05 295 1

原创 CASSI论文学习(五)Deep plug-and-play priors for spectral snapshot compressive imaging

提出了一种即插即用(PnP)方法,该方法使用基于深度学习的去噪器作为光谱快照压缩成像(SCI)的正则化先验。

2023-07-06 17:53:20 386 1

原创 CASSI四 Effective Snapshot Compressive-spectral Imaging via Deep Denoising and Total Variation Priors

给定输入图像x(k+1),目标是找到一个去噪后的图像v(k+1)。因此,我们引入了关于噪声水平σ的分布p(σ|x(k+1)),表示在给定观测数据x(k+1)时σ的可能取值的概率分布。最大后验估计的目标是在给定观测数据x(k+1)和噪声水平σ的条件下,找到最有可能的去噪图像v(k+1)。去噪的优化问题问题(左式)可以看作给定观测数据x(k+1)和噪声水平σ时,对于去噪图像v(k+1)的最大后验估计(右式)p(v|x(k+1), σ) 表示给定观测数据x(k+1)和噪声水平σ时,去噪图像v的条件概率分布。

2023-06-29 11:21:11 259 3

原创 编码孔径快照式光谱成像(CASSI)论文学习(三)——Prior Image Guided SnapshotCompressive Spectral Imaging

1、求x:求偏导,利用矩阵逆引理求解。

2023-06-13 16:37:20 609 1

原创 CASSI论文学习(二)——GENERALIZED ALTERNATING PROJECTION BASED TOTAL VARIATION MINIMIZATION FOR CS

作为两个圆(其他形状也可以),求其交点(因为两个条件均需满足)。通过交替投影,投影到同一个点的时候结束,即。本文工作:使用广义交替投影(GAP)算法进行求解压缩传感的总变化(TV)最小化问题。对X做投影,通过交替投影,直到互相投影得到的值相同,则得到优化结果。的行列数比,其实就是测量值y行数与要求值x的列数的大小的比值。,求x成为一个TV去噪问题,可使用迭代裁剪算法求解。TV(x)的含义是对矩阵内值按行/按列相减,即。使用GAP解决,可得以下式子,在几何角度来解释,可将X和。基本的TV总变分问题如下,

2023-04-19 15:17:38 957 2

原创 编码孔径快照式光谱成像(CASSI)论文学习(一)——Rank Minimization for Snapshot Compressive Imaging

左边:通过SCI相机之一的CACTI获得Measurement测量值y(多帧Scene与Mask做Hadamard乘积之和)是两个矩阵按照对应元素相乘所得到的结果。如果两个矩阵A和B的维度相同,即A和B都是m行n列的矩阵,那么它们的Hadamard乘积C的每个元素c_ij就是a_ij和b_ij相乘所得到的结果,即:中间:将y与Mask输入,Initialization是指将y恢复成多帧(如何做?)然后将多帧划分为N个。

2023-04-19 15:14:20 2296 5

原创 主成分分析法(PCA)简要学习笔记(包含与SVD的关系)

假设x为一组二维的数据,要降维到一维,想要尽量保存原有数据的信息,则目标可表达为要找到一个向量U使此二维数据投影到此向量上的范围尽可能的大(在几何的角度来说,即:使得该二维数据能够尽可能多的对该向量做垂线,且垂线尽可能不重合),PCA将其用方差进行衡量,SVD可以用来算PCA,不过SVD并未进行归一化,如下所示:(eig()为求解特征向量)由于本方法不考虑向量的长度,故U为单位向量,C为x的方差,投影y的方差为,可认为是C的特征值矩阵,即可表达成以下矩阵(矩阵元素数量仅示例作用)使用拉格朗日方程求解得,

2023-04-19 15:13:14 102

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除