【高等数学】python绘制常见的函数图像

本文通过Python代码展示了如何可视化复杂的数学函数,如三角函数、分数函数和指数函数的极限行为,以及如何用Matplotlib和Sympy解析极限问题。涉及的函数包括y=sin(1/x), (−1)^n/n, 1/x^2*sin(1/x), 和指数运算等,并解释了它们在极限情况下的特性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

背景

最近学高数,了解了许多函数,但是有些比较抽象。所有借助python进行可视化。

y=sin(1/x)

from matplotlib import pyplot as plt
import numpy as np
import math
x=list(np.arange(-40,40,0.1))#此处可调整自变量取值范围,以便选择合适的观察尺度
y=[]
for i in range(len(x)):
    y.append(math.sin(1/x[i]))
plt.plot(x,y)
plt.show()

x趋向于0:y=sin(1/x)函数。实际函数值是在-1和1之间来回震荡,越靠近0频率越高,但是不会趋近于0,因为是一直在越来越快地振荡,永不停止。
x趋向于无穷,1/x趋向于0,sinx趋向于0,y趋向于0
在这里插入图片描述
在这里插入图片描述

a n = ( − 1 ) n / n a_{n}=(-1)^{n}/n an=(1)n/n,数列

from matplotlib import pyplot as plt
import numpy as np

def deal(a,b):
    x1=list(np.arange(a,b,1))#此处可调整自变量取值范围,以便选择合适的观察尺度
    try:
        x1.remove(0)
    except:
        pass
    x1=list(map(float,x1))
    y=[]
    for i in range(len(x1)):
        y.append(((-1)**x1[i])/x1[i])
    plt.plot(x1,y,color='lightseagreen')

deal(-100,0)
deal(0,100)
plt.show()

在这里插入图片描述
y = ( − 1 ) n / n y=(-1)^{n}/n y=(1)n/n,随着n趋向于1,向1逼近。
随着n趋向于无穷,随着奇偶数,在正负波动中趋近于0
在这里插入图片描述

y = [ 1 / x ] ∗ x y=[1/x]*x y=[1/x]x

from matplotlib import pyplot as plt
import numpy as np

x=list(np.arange(-2,2,0.005))#此处可调整自变量取值范围,以便选择合适的观察尺度
y=[]
for i in range(len(x)):
    y.append(int(1/x[i])*x[i])
plt.plot(x,y)
plt.show()

当x>=1时,y=0;
当x<1时,y受取整函数影响,不断从1开始递减。但是递减的幅度越来越小。换句话说不断向1逼近。
在这里插入图片描述
在这里插入图片描述

y = [ 1 / x 2 ] ∗ s i n ( 1 / x ) y=[1/x^{2}]*sin(1/x) y=[1/x2]sin(1/x)

x->0,f(x)->在(-oo, oo)之间震荡
x->无穷,f(x)->0

y.append((1/(x1[i]**2))*(math.sin(1/x1[i])))

在这里插入图片描述

在这里插入图片描述

y = n + 1 / n 0.5 y=n+1/n^{0.5} y=n+1/n0.5

一个趋向于无穷,一个趋向于0,但是两者都大于0,加起来趋向于无穷。

y.append(x1[i]+(1/(x1[i]**0.5)))

在这里插入图片描述

y = x ∗ s i n ( 1 / x ) y=x*sin(1/x) y=xsin(1/x)

趋向于无穷时,1/x趋向于0,f(x)趋向于0
趋向于0时,f(x)在(-oo, oo)之间震荡,无极限

y.append((1/(x1[i]))*(math.sin(1/x1[i])))

在这里插入图片描述

在这里插入图片描述

基本极限函数

y = s i n ( x ) / x y=sin(x)/x y=sin(x)/x

理解为,两者是同阶无穷小,递减速度相似,x->0,f(x)->1
分母不断变大,趋向于0;x->无穷,f(x)->0

#求极限
import sympy
from sympy import oo
x = sympy.symbols('x')
f=sympy.sin(x)/(x**2)
print(sympy.limit(f,x,oo))
print(sympy.limit(f,x,0))
#绘图
y.append((math.sin(x1[i]))/x1[i])

在这里插入图片描述

y = ( 1 + x ) 1 / x y=(1+x)^{1/x} y=1+x1/x

x->0,f(x)->e
x->无穷,f(x)->1
在这里插入图片描述

y = ( 1 + 1 / x ) x y=(1+1/x)^{x} y=1+1/xx

x->0,f(x)->1
x->无穷,f(x)->e
在这里插入图片描述

y = ( n ) 1 / n y=(n)^{1/n} y=n1/n

n->0,1/n->无穷,f(n)->0
n->无穷,1/n->0,f(n)->1

在这里插入图片描述
n不能为负数,如果1/n为偶数就会变正数
在这里插入图片描述
新开通了本人的公众号,欢迎关注:燕南路GISer ,专注GIS干货分享,不定期更新。
主要兴趣:GIS、时空数据挖掘、python、机器学习深度学习
提问、求资源等都可在公众号后台留言
CSDN的部分内容会重写再搬迁到公众号,欢迎关注!
在这里插入图片描述

<think>嗯,用户想查找高等数学常见函数图像示例。首先,我需要回忆高数中的基本函数类型,比如一次函数、二次函数、幂函数、指数函数、对数函数、三角函数、反三角函数,还有分段函数和特殊函数如绝对值函数。这些应该都是常见的,用户可能需要这些图像来辅助学习。 然后,根据系统指令,所有行内数学表达式要用$...$格式。比如,一次函数可以写成$f(x)=kx + b$。独立公式需要用$$...$$,并且单独成段。例如二次函数的公式应该单独放一行,用双美元符号包围。 接下来,要检查引用的部分是否符合要求。用户提供的引用有四个,其中引用1提到奇函数的定义和图像特点,引用3提到高等数学在Android开发中的应用,引用2关于泰勒展开,引用4可能涉及图像绘制。我需要确保在回答中正确引用这些内容。例如,当提到奇函数图像时,可以引用[^1],而图像处理部分可以引用[^3]。 然后,生成相关问题。根据示例,问题应该围绕用户的问题展开,比如常见函数图像的特点、应用、绘制工具等。需要确保问题与内容相关,帮助用户进一步学习。 还要注意回答结构清晰,分点列出函数类型,每个类型给出函数式和图像特点,并适当加入示例代码或图像描述。例如,可以提到绝对值函数图像是V形,或者正弦函数的周期性。同时,在适当的地方插入引用,如奇函数的特点引用,图像处理应用引用[^3]。 另外,用户可能对如何绘制这些函数图像感兴趣,所以可以考虑在回答中加入简单的绘图方法,比如使用Python的Matplotlib库,并给出示例代码,如引用[^4]中的subplot用法可能需要对应到代码示例中,但用户提供的引用4中的代码是MATLAB的,可能需要调整成Python版本。 最后,检查所有LaTeX语法是否正确,确保没有格式错误,比如积分符号、上下标等。例如,泰勒展开中的$f(x)$是否正确使用$符号包裹。确认每个独立公式都正确使用$$...$$,并且行内公式正确使用$...$。 总结步骤:1.列出常见函数类型;2.描述每个函数的表达式和图像特点;3.加入引用;4.生成相关问题;5.确保格式正确,尤其是LaTeX和引用位置。</think>### 高等数学常见函数图像示例 以下是高等数学常见函数类型及其图像特点,结合定义和实际应用说明: --- #### 1. **基本初等函数** - **一次函数** 表达式:$f(x) = kx + b$ 图像特点:一条直线,斜率为$k$,截距为$b$。 示例:$f(x)=2x+1$ 的图像向右上方倾斜。 - **二次函数** 表达式:$f(x) = ax^2 + bx + c$ 图像特点:抛物线,开口方向由$a$的正负决定。 示例:$f(x) = x^2$ 的图像开口向上,顶点在原点。 - **幂函数** 表达式:$f(x) = x^n$(如$n=3, 1/2, -1$) 图像特点:形状随指数$n$变化。例如,$f(x)=x^3$为奇函数图像关于原点对称[^1]。 - **指数函数** 表达式:$f(x) = a^x$($a>0$且$a \neq 1$) 图像特点:当$a>1$时曲线递增,$0<a<1$时递减,始终经过点$(0,1)$。 - **对数函数** 表达式:$f(x) = \log_a x$ 图像特点:与指数函数互为反函数图像关于$y=x$对称,定义域为$(0,+\infty)$。 --- #### 2. **三角函数与反三角函数** - **正弦函数** 表达式:$f(x) = \sin x$ 图像特点:周期为$2\pi$的波浪曲线,奇函数。 - **反正切函数** 表达式:$f(x) = \arctan x$ 图像特点:定义域为$\mathbb{R}$,值域$(-\pi/2, \pi/2)$,图像呈“S”形。 --- #### 3. **特殊函数** - **绝对值函数** 表达式:$f(x) = |x|$ 图像特点:V形折线,在$x=0$处不可导。 - **分段函数** 示例:符号函数$f(x) = \begin{cases} 1 & x>0 \\ 0 & x=0 \\ -1 & x<0 \end{cases}$ 图像特点:在$x=0$处不连续。 --- #### 4. **应用示例** - **图像处理**:锐化或模糊处理中,卷积核的设计涉及函数极限与微分方程。 - **算法优化**:泰勒展开用于近似复杂函数(如梯度下降法保留一阶项,牛顿法保留二阶项)[^2]。 --- #### 5. **函数图像绘制方法** 使用Python绘制正弦函数示例: ```python import matplotlib.pyplot as plt import numpy as np x = np.linspace(-2*np.pi, 2*np.pi, 100) y = np.sin(x) plt.plot(x, y, label='$f(x) = \sin x$') plt.legend() plt.show() ``` 效果类似引用[^4]中的分图展示方式。 ---
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

燕南路GISer

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值