1,Havel-Hakimi定理主要用来判定一个给定的度序列是否是可图的。
2,首先介绍一下度序列:若把图 G 所有顶点的度数排成一个序列 S,则称 S 为图 G 的度序列。
3,一个非负整数组成的有限序列如果是某个无向图的序列,则称该序列是可图的。
4,判定过程:
(1)对当前数列排序,使其呈递减。
(2)从S【2】开始对其后S【1】个数字-1。
(3)一直循环直到当前序列出现负数(即不是可图的情况)或者当前序列全为0 (可图)时退出。
5,举例:序列S:7,7,4,3,3,3,2,1 删除序列S的首项 7 ,对其后的7项每项减1,得到:6,3,2,2,2,1,0,继续删除序列的首项6,对其后的6项每项减1,得到:2,1,1,1,0,-1,到这一步出现了负数,因此该序列是不可图的
6.我解释一下意思:排好序后为d1,d2,d3,d4....dn,设度数最大的为v1,将它与度数次大的前d1个顶点连边,然后这个顶点就可以不管了,及在序列中删除首项d1,并把后面的d1个度数减1,依次下去,知道所有的为0就是可图的,出现负数,就一定不可图..
参考题目: http://blog.csdn.net/no_retreats/article/details/7855354