_Celeste_
码龄4年
  • 85,687
    被访问
  • 31
    原创
  • 31,359
    排名
  • 83
    粉丝
关注
提问 私信
  • 加入CSDN时间: 2017-11-27
博客简介:

Celeste的博客

博客描述:
学习笔记
查看详细资料
  • 3
    领奖
    总分 274 当月 20
个人成就
  • 获得160次点赞
  • 内容获得42次评论
  • 获得590次收藏
创作历程
  • 7篇
    2021年
  • 16篇
    2020年
  • 24篇
    2019年
  • 15篇
    2018年
成就勋章
TA的专栏
  • Linux
    10篇
  • 最近
  • 文章
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

MIMO-OFDM无线通信技术及MATLAB实现

发布资源 2022.03.20 ·
pdf

静态时序分析中的计算问题

1. 几个重要概念1.1 Clock Setup Time (Tsu)时钟沿到来之前数据需要稳定的时间1.2Clock Hold Time (Th)时钟沿到来之后数据需要稳定的时间1.3Clock-to-Output Delay(Tco)寄存器的时钟有效沿 —— 》寄存器Q端有输出的时间1.4Clock skew前后两个寄存器时钟输入端的偏移量,Tskew = Tclk2 - Tclk1(Tclk2>Tclk1)1.5Data Arrival...
原创
发布博客 2021.09.24 ·
128 阅读 ·
0 点赞 ·
0 评论

FIFO设计核心问题

1.什么是FIFO?FIFO (First-In-First-Out) 是一种先进先出的数据交互方式,在数字ASIC设计中常常被使用。FIFO按工作时钟域的不同又可以分为:同步FIFO和异步FIFO。拓展:与此有关的另一个概念是堆栈也就是LIFO(last-in, first-out),在单片机中堆栈常用于函数调用、中断切换时保存和恢复现场数据。本质上FIFO就是一个双端口的RAM加上一些外部控制信号组成的,目的就是对这个RAM内的数据进行读写操作。2. FIFO中的RAM在Verilog中
原创
发布博客 2021.09.21 ·
335 阅读 ·
0 点赞 ·
0 评论

2020年软件无线电考试试题.pdf

发布资源 2021.09.18 ·
pdf

Python机器学习之游戏自动驾驶(三)

3. 如何进行测试在对测试阶段关键在于如何通过python对电脑发出相应的按键操作,因为我们的目的是让神经网络根据游戏的画面给出对应的操作,要想给出对应的操作也需要用到
原创
发布博客 2021.06.21 ·
306 阅读 ·
1 点赞 ·
0 评论

Python机器学习之游戏自动驾驶(二)

上一篇我们讲解了如何获取训练数据,这一篇文章讲解如何用Pytorch搭建网络并进行训练。上一篇文章中提到我把游戏的画面进行了压缩,压缩成了227*227*1的图片,熟悉图像分类
原创
发布博客 2021.05.31 ·
274 阅读 ·
0 点赞 ·
1 评论

Python机器学习之游戏自动驾驶(一)

先说一下总体思路,这一块需要读者有一定的机器学习基础。我们在玩游戏的时候,是眼睛看到了屏幕的画面之后,大脑思考应该怎么操作,然后发送指令到我们的手指,按下指定的按键。利用机器学习玩游戏也是同样的道理,我们可以把游戏的过程离散化,以每一帧游戏画面为单位,连续的操作则对应到每一张图片的操作。输入一张图片,就对应了一个操作,这个操作可以作为图片的标签。这时候我们就可以把玩游戏的过程建模为一个图片的分类过程,在跑跑卡丁车自动驾驶中,我对操作进行了简化,一共只有三种操作,左转,右转和直行。每个图片对应着一
原创
发布博客 2021.05.18 ·
780 阅读 ·
1 点赞 ·
1 评论

Python机器学习之游戏自动驾驶

这个项目去年就做了但是一直拖着没写个博客(主要是懒。。),现在开始更新,最终实现效果我已经在B站传了视频,感兴趣的可以去看看Python机器学习——跑跑自动驾驶_哔哩哔哩 (゜-゜)つロ 干杯~-bilibili...
原创
发布博客 2021.05.11 ·
307 阅读 ·
0 点赞 ·
0 评论

RS编码过程通俗理解

说明本文^代表异或,**代表幂第一步:理解伽罗华域(有限域)伽罗瓦域本质上是一个受限的集合,以及一些数学运算,使得运算的结果仍然在这个集合中。对于二维码标准来说,要使用位为模数2的算子,字节为模数100011101(本原多项式x**8+x**4+x**3+x**2+1)的算子。这意味着使用GF(2**8),有时写成GF(256)。GF(256)中的数字都在0到255(含)的范围内。请注意,这也是可以用一个八位字节表示的数字范围(最大的八位字节是1111111,等于255)。这意味着GF(
原创
发布博客 2021.03.02 ·
8950 阅读 ·
19 点赞 ·
13 评论

MMSE (Minimum Mean Square Error)均衡原理讲解

MMSE是一种将接收数据的MSE(均方误差)最小化的模型。有了这句话,很多问题就会在你的脑海中蹦出来。什么是均方误差?最小化MSE "的物理含义是什么? 等等。让我们从一个我们现在已经非常熟悉的通道模型开始。(我希望你现在也熟悉下面的表达方式。)MMSE作为一种均衡器,是一种后处理算法,它可以帮助我们找出接收到的数据,使之尽可能地接近原始数据(传输数据)。简而言之,MMSE中最重要的步骤是找到一个如下图所示的矩阵G。如果我们假设没有噪声,这个[G]矩阵可以简单的作为信道矩阵(H^-1)的倒数。但
原创
发布博客 2020.12.23 ·
9313 阅读 ·
28 点赞 ·
6 评论

通信射频电路与系统仿真实验2

发布资源 2020.11.26 ·
pdf

认知无线电综述

1.认知无线电简介认知无线电(Cognitive radio, CR)的概念起源于1999年Joseph Mitola博士的奠基性工作。它可以通过学习、理解等方式,自适应的调整内部的通信机理、实时改变特定的无线操作参数(如功率、载波调制和编码等),来适应外部无线环境,自主寻找和使用空闲频谱。它能帮助用户选择最好的、最适合的服务进行无线传输,甚至能够根据现有的或者即将获得的无线资源延迟或主动发起传送。Joseph Mitola定义的认知无线电强调“学习”的能力,认知无线电系统需要考虑通信环境中的每一个
原创
发布博客 2020.09.09 ·
6354 阅读 ·
13 点赞 ·
0 评论

Zigbee接受机模拟与数字前端设计(软件无线电期末试题)

(一)模拟前端信号参数: 射频频宽902-928MHz 信号带宽26MHz 采样信号带宽为26M,中心频率f0=915M,取信道最小带宽40M,由带通采样定理有 框图如下(二)数字前端1.通道分离由Rb=40k,调制方式为BPSK可知,每一个信道带宽B=2Rb=80k信道1的NCO频率故取0.29pi滤波器带宽2.采样率变换(三)数字基带处理已调信号令则即可以解调...
原创
发布博客 2020.08.13 ·
203 阅读 ·
1 点赞 ·
0 评论

TOA定位算法的关系与泰勒级数法的原理

定位方法之间的关系泰勒级数法
原创
发布博客 2020.06.04 ·
8882 阅读 ·
7 点赞 ·
3 评论

如何培育法治观念

3月15日中国政法大学教授罗翔在网络上进行了一场直播讲座,主题是如何培育法治观念,核心内容就是四个字“法治天下”。听了罗老师的讲座之后感觉受益匪浅,此篇文章就是对罗老师讲座的总结与感悟。要理解“法治天下”首先我们要知道什么是法治,亚里士多德关于法治的定义有两个层次,第一个是“良法而治”,第二个是“普遍遵守”。首先我们来谈什么是“良法而治”。亚里士多德告诉我们,一个能够被普遍遵守的法律一定是一个良好的法律,这个法律本身是要追求良善的。如果法律本身不追求公平与正义,不追求良善,那么这个法律也不可能被普遍
原创
发布博客 2020.06.04 ·
598 阅读 ·
0 点赞 ·
1 评论

Pytorch之DataLoader的num_works参数设置

数据集较小时(小于2W)建议num_works不用管默认就行,因为用了反而比没用慢。当数据集较大时建议采用,num_works一般设置为(CPU线程数-1)为最佳,可以用以下代码找出最佳num_works(注意windows用户如果要使用多线程必须把训练放在if __name__ == '__main__':下才不会报错)import timeimport torch.utils.data as dimport torchvisionimport torchvision.transforms
原创
发布博客 2020.05.28 ·
9782 阅读 ·
17 点赞 ·
0 评论

Pytorch卷积层输入输出大小计算

Pytorch中Conv2d有下面几个参数:input_channels, output_channels, kernel_size, stride, padding, group若输入图片为正方形,设输入为(C1, H1, W1),输出为(C2, H2, W2)则C2 = out_channelsH2 = W2 = (H1 or W1 - kernel_size + 2 * padding) / stride + 1...
原创
发布博客 2020.05.27 ·
2902 阅读 ·
0 点赞 ·
0 评论

朴素贝叶斯,支持向量积,Fisher分类器的简单数学原理推导

1.朴素贝叶斯算法(Naive Bayes)2.支持向量机(Support Vector Machine,SVM)的wolf对偶模型3.Fisher分类器or线性判别分析(Linear Discriminant Analysis,LDA)
原创
发布博客 2020.05.18 ·
247 阅读 ·
1 点赞 ·
0 评论
加载更多