任务
小组完成了Excel文件转换为CSV文件、打通了通义千问的API接口。
接下来完成一个POST接口,接收文件和需求,将其拼接为Prompt中输入给AI的格式。
上传文件、发送请求
@PostMapping("/analyse")
public DataResponse update(
@RequestParam("file") MultipartFile file,
@RequestParam("necessary") String necessary) throws NoApiKeyException, InputRequiredException {
// 上传文件处理
String excelFilePath = "src/main/java/com/example/demo/service/impl/testDir";
try {
// 保存文件逻辑
byte[] bytes = file.getBytes();
excelFilePath = excelFilePath + "/" + file.getOriginalFilename();
Path path = Paths.get(excelFilePath);
Files.write(path, bytes);
System.out.println(file.getOriginalFilename() + "保存成功");
} catch (Exception e) {
return CommonMethod.getReturnData(500, "文件保存失败:" + e.getMessage());
}
// 拼接提示词
if (necessary == null) necessary = "分析变化情况";
String message = "分析需求:\n";
message += necessary;
message += "\n原始数据:\n";
String csvString = convertExcelToCsv(excelFilePath, null);
message += csvString;
String result = callWithMessage(message);
}
文件保存,使用try catch保存文件到本地,调用之前的convertExcelToCsv
函数将excel转化为CSV格式。
使用字符串拼接为Prompt中要求的格式,调用AI函数。
提取结果
请求得到的数据
调用AI函数后的result
变量值如下:
【【【【【
```javascript
option = {
title: {
text: '网站用户增长情况',
subtext: '日期 vs 用户数',
x: 'center'
},
xAxis: {
type: 'category',
data: ['1号', '2号', '3号'],
axisLabel: {
interval: 0
}
},
yAxis: {
type: 'value',
name: '用户数'
},
series: [{
name: '用户增长',
type: 'line',
data: [10, 20, 30],
smooth: true
}]
};
```
】】】】】
数据分析结论:根据数据,网站用户在1号至3号期间呈现出线性增长趋势。1号有10名用户,2号增加到20名,3号进一步增长至30名。这种稳定的增长态势表明网站的用户基数正在稳步扩大。
分割数据
这个变量值显然不可直接使用,需要做一些分割并处理掉markdown格式的```,处理代码:
// 这里做字符串之后的分割
String code = "", analyse = "";
// 遇到第一个】就分割成两个部分
String[] strings = result.split("】", 2);
code = strings[0].replace("【", "");
analyse = strings[1].replace("【", "");
code = code.replace("】", "");
analyse = analyse.replace("】", "");
Map data = new HashMap();
data.put("code", code);
data.put("analyse", analyse);
return CommonMethod.getReturnData(200, data, "分析成功");
这里只展示了关键代码,实际的代码中通过对一些关键词的查找、分割后数组的大小可判断是否顺利生成,若没有顺利生成则会返回别的错误码。
测试接口
使用Apifox软件POST该接口,得到如下结果:
{
"code": 200,
"data": {
"code": "\n{\n \"title\": \"网站用户增长情况\",\n \"xAxis\": {\n \"type\": \"category\",\n \"data\": [\"1号\", \"2号\", \"3号\"]\n },\n \"yAxis\": {\n \"type\": \"value\",\n \"name\": \"用户数\"\n },\n \"series\": [\n {\n \"name\": \"用户增长\",\n \"type\": \"line\",\n \"data\": [10.0, 20.0, 30.0],\n \"smooth\": true\n }\n ]\n}\n",
"analyse": "\n\n数据分析结论:\n根据图表显示,网站用户在1号到3号期间呈现逐日增长的趋势。具体来说,1号用户数为10,2号增长到20,3号进一步增加到30,显示出网站的用户基础在稳步扩大。这可能是由于新用户注册增加、活跃度提升或者市场推广活动的效果。为了更深入地了解用户增长的驱动力,可能需要分析其他相关数据,如用户来源、留存率等。"
},
"msg": "分析成功"
}
这样的JSON值可以非常容易地被前端调用。
Mock接口
由于该接口会ai反复调用,反应慢且消耗Token。
故使用一个mock接口模拟调用接口返回的数据,方便前端开发。
@PostMapping("/mock")
public DataResponse updateMock(
@RequestParam("file") MultipartFile file,
@RequestParam("necessary") String necessary) {
Map data = new HashMap();
data.put("code", "\\n{\\n \\\"title\\\": \\\"网站用户增长情况\\\",\\n \\\"xAxis\\\": {\\n \\\"type\\\": \\\"category\\\",\\n \\\"data\\\": [\\\"1号\\\", \\\"2号\\\", \\\"3号\\\"]\\n },\\n \\\"yAxis\\\": {\\n \\\"type\\\": \\\"value\\\",\\n \\\"name\\\": \\\"用户数\\\"\\n },\\n \\\"series\\\": [\\n {\\n \\\"name\\\": \\\"用户增长\\\",\\n \\\"type\\\": \\\"line\\\",\\n \\\"data\\\": [10.0, 20.0, 30.0],\\n \\\"smooth\\\": true\\n }\\n ]\\n}\\n");
data.put("analyse", "\\n\\n数据分析结论:\\n根据图表显示,网站用户在1号到3号期间呈现逐日增长的趋势。具体来说,1号用户数为10,2号增长到20,3号进一步增加到30,显示出网站的用户基础在稳步扩大。这可能是由于新用户注册增加、活跃度提升或者市场推广活动的效果。为了更深入地了解用户增长的驱动力,可能需要分析其他相关数据,如用户来源、留存率等。");
return CommonMethod.getReturnData(200, data, "分析成功");
}
前端得到如下返回结果:
{
"code": 200,
"data": {
"code": "\n{\n \"title\": \"网站用户增长情况\",\n \"xAxis\": {\n \"type\": \"category\",\n \"data\": [\"1号\", \"2号\", \"3号\"]\n },\n \"yAxis\": {\n \"type\": \"value\",\n \"name\": \"用户数\"\n },\n \"series\": [\n {\n \"name\": \"用户增长\",\n \"type\": \"line\",\n \"data\": [10.0, 20.0, 30.0],\n \"smooth\": true\n }\n ]\n}\n",
"analyse": "\n\n数据分析结论:\n根据图表显示,网站用户在1号到3号期间呈现逐日增长的趋势。具体来说,1号用户数为10,2号增长到20,3号进一步增加到30,显示出网站的用户基础在稳步扩大。这可能是由于新用户注册增加、活跃度提升或者市场推广活动的效果。为了更深入地了解用户增长的驱动力,可能需要分析其他相关数据,如用户来源、留存率等。"
},
"msg": "分析成功"
}
这与调用真实接口得到的结果一致,方便前端的后续开发。