
具身智能零碎知识点
文章平均质量分 92
墨绿色的摆渡人
这个作者很懒,什么都没留下…
展开
-
具身智能零碎知识点(四):联合嵌入预测架构(JEPAs)详解
**联合嵌入预测架构(JEPAs)** 是一种自监督学习框架,旨在通过**预测隐空间(Latent Space)的抽象特征**而非原始数据(如图像像素),来高效学习数据的本质规律。它结合了对比学习(对比嵌入)和预测建模的优势,目标是让模型在低维嵌入空间中捕捉数据的高层语义关系。原创 2025-04-20 16:29:47 · 653 阅读 · 0 评论 -
具身智能零碎知识点(三):深入解析 “1D UNet”:结构、原理与实战
**1D UNet** 是一种专为处理一维序列数据(如音频、时间序列、传感器信号)设计的深度学习模型。它通过 **“编码-解码”结构** 和 **跳跃连接(Skip Connection)** 实现高效特征提取与细节恢复,广泛应用于信号去噪、时序预测、语音增强等任务。原创 2025-04-12 21:49:06 · 1046 阅读 · 0 评论 -
具身智能零碎知识点(二):深入解析 “残差映射”
深入解析 “残差映射”原创 2025-04-11 15:36:28 · 779 阅读 · 0 评论 -
零碎的知识点(十八):边缘似然(Marginal Likelihood)详解
**边缘似然**(也叫**证据**,Evidence)是**在考虑所有可能的参数取值后,观测数据出现的平均概率**。 - **类比**:假设你有一个装有无数枚硬币的袋子,每枚硬币的正面概率\(\theta\)不同。边缘似然就是随机抽一枚硬币,抛5次得到3次正面的**平均概率**。原创 2025-04-01 02:53:24 · 949 阅读 · 0 评论 -
零碎的知识点(十七):变分推断与Beta分布
**摘要**:变分推断是机器学习中逼近复杂概率分布的强大工具。本文以抛硬币实验为例,结合Beta分布与二项分布,手把手教你如何用变分推断估计硬币正面概率,并提供Python代码实现。无论你是统计新手还是进阶学习者,都能在此找到实用洞见。原创 2025-04-01 02:13:16 · 958 阅读 · 0 评论 -
零碎的知识点(十六):ACT(基于Transformer的动作分块)详解
ACT是机器人的“分步计划生成器”。假设机器人要完成“拿水杯→倒水→放下水杯”这一长任务,ACT会将动作分解为多个小段(如每段10步),用Transformer逐段生成,同时确保各段之间的连贯性。 **类比**:写长篇小说时先分章节,再逐章撰写,每章内容参考前文章节。原创 2025-03-30 00:09:04 · 795 阅读 · 0 评论 -
零碎的知识点(十五):理解条件变分自编码器 Conditional Variational Autoencoders (CVAE):简单原理与数值案例详解
**一句话定义**: 条件变分自编码器(CVAE)是一种生成模型,能够根据给定的条件信息(如标签、文本描述)生成符合特定要求的数据(如图像、文本)。 **类比理解**: 假设你想让画家画一只“戴墨镜的猫”。传统画家(类似普通VAE)自由发挥,而CVAE是“命题画家”——必须按你的要求创作,且能生成多种风格的结果(如卡通猫、写实猫)。原创 2025-03-28 23:01:36 · 456 阅读 · 0 评论 -
零碎的知识点(十三):“自回归策略” 是什么?
自回归策略就像“写作文时,每句话都要参考前面写过的内容”。在人工智能决策中,它指的是一种生成**动作序列**的方法:每一步选择的动作,不仅看当前环境状态,还要参考自己之前已经执行过的动作。**核心思想是“逐步生成,步步为营”**。原创 2025-03-25 15:51:25 · 531 阅读 · 0 评论 -
零碎的知识点(十四):“重参数化技巧” 是什么?变分自编码器(VAE)的核心引擎
假设你正在训练一个生成模型(例如变分自编码器,VAE),希望通过神经网络生成逼真的图像。在这个过程中,你需要从某个分布中**随机采样**潜在变量(Latent Variable)来驱动生成过程。但当你尝试直接采样时,会发现一个致命问题:**“随机性”阻断了反向传播的梯度传递**,导致模型无法优化! 这就是 **重参数化技巧(Reparameterization Trick)** 诞生的背景。它被广泛应用于变分自编码器(VAE)、条件变分自编码器(CVAE)、强化学习等领域,是连接概率建模与深度学习的关原创 2025-03-28 20:09:34 · 994 阅读 · 0 评论 -
零碎的知识点(八):代价函数是什么?
代价函数是用于量化一个系统或模型性能的数学函数。它通常用于机器学习和优化问题中,描述模型在整体数据上的表现。代价函数的值越小,模型的性能越好。在监督学习中,代价函数通常用来衡量预测值和真实值之间的误差。原创 2025-01-11 16:24:24 · 1091 阅读 · 0 评论 -
具身智能零碎知识点(一):深入解析Transformer位置编码
深入解析Transformer位置编码原创 2025-04-08 00:09:55 · 1249 阅读 · 0 评论