【Python Matplotlib 教程】第20课时-Matplotlib 直方图

Matplotlib 直方图

直方图是对数值数据的分布的准确表示。它是对连续变量的概率分布的估计。它是一种条形图。

构建直方图的步骤如下:

  • 将值范围分组(bin)。
  • 将整个值范围划分为一系列间隔。
  • 计算落入每个间隔的值的数量。

bin通常被指定为连续且不重叠的变量间隔。

matplotlib.pyplot.hist() 函数用于绘制直方图。它计算并绘制x的直方图。

参数

以下表列出了直方图的参数:

x数组或者数组的序列
bins整数或者整数的序列或者 ‘auto’,可选参数
rangebins的下限和上限范围。
density如果为True,则返回元组的第一个元素将被标准化为概率密度。
cumulative如果为True,则计算一个直方图,其中每个bin给出该bin及更小值的所有bin的计数。
histtype绘制直方图的类型。默认为 ‘bar’
  • ‘bar’ 是传统的条形直方图。如果给定多个数据,则将这些条形并排排列。
  • ‘barstacked’是一种将多个数据彼此叠加的条形直方图。
  • ‘step’ 生成一个默认不填充的折线图。
  • ‘stepfilled’ 生成一个默认填充的折线图。

下面的例子绘制了一个班级学生成绩的直方图。定义了四个区间,分别是0-25,26-50,51-75和76-100。直方图显示了在这个范围内的学生人数。

from matplotlib import pyplot as plt
import numpy as np
fig,ax = plt.subplots(1,1)
a = np.array([22,87,5,43,56,73,55,54,11,20,51,5,79,31,27])
ax.hist(a, bins = [0,25,50,75,100])
ax.set_title("histogram of result")
ax.set_xticks([0,25,50,75,100])
ax.set_xlabel('marks')
ax.set_ylabel('no. of students')
plt.show()

Python

Copy

情节如下所示:

Matplotlib 直方图

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

青少年编程作品集

你的赞赏将带来极佳的运气和才气

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值