POJ 2553 The Bottom of a Graph

12 篇文章 0 订阅
6 篇文章 0 订阅

POJ 2553 The Bottom of a Graph

图论,targan

传送门:POJ

传送门:HustOJ


题意

Here are some new definitions. A node v in a graph G=(V,E) is called a sink, if for every node w in G that is reachable from v, v is also reachable from w. The bottom of a graph is the subset of all nodes that are sinks, i.e., bottom(G)={v∈V|∀w∈V:(v→w)⇒(w→v)}. You have to calculate the bottom of certain graphs.

一张有向图,找出所有满足条件的点。
找出符合条件的点a的集合,使得对于任意的b:如果a可以到达b,那么b一定可以到达a。


思路

有向图缩点后得到DAG,我们要找的就是DAG上出度为0的点。

学到的就是缩点后如何计算出度入度。


代码

#include <cstdio>
#include <cstdlib>
#include <iostream>
#include <algorithm>
#include <string>
#include <cstring>
#include <vector>
#include <cmath>
#include <queue>
#include <stack>
#include <map>
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define _ ios_base::sync_with_stdio(0),cin.tie(0)
#define M(a,b) memset(a,b,sizeof(a))
using namespace std;

const int MAXN=5005;
const int oo=0x3f3f3f3f;
typedef __int64 LL;
const LL loo=4223372036854775807ll;
typedef long double LB;
const LL mod=1e9+7;
typedef long long LL;

struct Targan
{
    //sccno[i]为i所在的dfs块编号
    vector<int> G[MAXN];
    int pre[MAXN], lowlink[MAXN], sccno[MAXN], dfs_clock, scc_cnt;
    stack<int> S;
    void init()
    {
        for(int i=0;i<MAXN;i++) G[i].clear();
        while(!S.empty()) S.pop();
    }
    void addedge(int a, int b)//加边,单向边a到b
    {
        G[a].push_back(b);
    }
    void dfs(int u)
    {
        pre[u]=lowlink[u]=++dfs_clock;
        S.push(u);
        for(int i=0;i<G[u].size();i++)
        {
            int v=G[u][i];
            if(!pre[v])
            {
                dfs(v);
                lowlink[u]=min(lowlink[u], lowlink[v]);
            }
            else if(!sccno[v])
            {
                lowlink[u]=min(lowlink[u], pre[v]);
            }
        }
        if(lowlink[u]==pre[u])
        {
            scc_cnt++;
            while(true)
            {
                int x=S.top();S.pop();
                sccno[x]=scc_cnt;
                if(x==u) break;
            }
        }
    }
    void find_scc(int n)
    {
        dfs_clock=scc_cnt=0;
        M(sccno, 0);M(pre, 0);
        for(int i=1;i<=n;i++)//注意修改取值范围
        {
            if(!pre[i]) dfs(i);
        }
    }
};
int oudegree[MAXN];
int main()
{
    _;
    int n;
    Targan targan;
    while(cin>>n&&n!=0)
    {
        targan.init();
        M(oudegree, 0);
        int m;cin>>m;
        for(int i=0;i<m;i++)
        {
            int a, b;cin>>a>>b;
            targan.addedge(a, b);
        }
        targan.find_scc(n);
        for(int i=1;i<=n;i++)
        {
            for(int j=0;j<targan.G[i].size();j++)
            {
                int to=targan.G[i][j];
                if(targan.sccno[i]!=targan.sccno[to])
                {
                    oudegree[targan.sccno[i]]=1;
                }
            }
        }
        vector<int> res;
        for(int i=1;i<=n;i++)
        {
            if(oudegree[targan.sccno[i]]==0)
            {
                res.push_back(i);
            }
        }

        for(int i=0;i<res.size();i++)
        {
            cout<<res[i];
            if(i!=res.size()-1) cout<<' ';
        }
        cout<<endl;
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值