思路一: O(nlogn)算法:
这个是最简单但最笨的一个思路:
n!=1* 2 * 3 * 4 * 5 … *n
就是遍历一下2~n之间的因子能否被质因子p整除然后用一个while循环进行除运算,并计数,直到因子不能被整除为止。
for+while结合遍历
代码如下:
#include<bits/stdc++.h>
using namespace std;
//计算n!中有多少个质因子p
int cal(int n,int p){//p是已知的
int ans=0;
for(int i=2;i<=n;i++){//遍历2~n
int temp=i;
while(temp%p==0){//只要temp还是p的倍数
ans++;//p的个数加 1
temp/=p;//temp除以 p
}
}
return ans;
}
int main(){
int n,p;
cin>>n>>p;
int res=cal(n,p);
cout<<res<<endl;
return 0;
}
思路二:O(logn) 算法:
思路一其实并不好,就比如: 对于n很大的情况(例如n是 10^18 ) 是无法承受的。我们需要寻求速度更快的算法:
现在考虑10!中质因子2的个数,
显然10!中有因子2^1 的数的个数为5,
有因子2^2的数的个数为2, 有因子2^3的数的个数为1,
因此10!中质因子2的个数为5+2+1=8;
仔细思考便可以发现此过程可以推广为: n! 中有(n / p + n / (p^2) + n / (p^3)十···)个质因子p, 其中除法均为向下取整。千是便得到了O(logn)的算法,过程就如下所示:
代码如下:
#include<bits/stdc++.h>
using namespace std;
int cal(int n,int p) {
int ans=0;
while(n) {
ans+=n/p;//累加n/p^k
n/=p;//相当于分母多乘一个p
}
return ans;
}
int main() {
int n,m;
cin>>n>>m;
int res=cal(n,m);
cout<<res<<endl;
return 0;
}
思路三:递归算法时间复杂度O(logn)
结合思路二:可以得出这样的规律:
5!中质因子 2 的个数等于 1~5 中是 2 的倍数的数的个数 2 (由 5/2=2 得到)
加上 2!中质因子 2 的个数。同理可推得 2!中质因子 2 的个数等千1, 因此 10!中质因子 2 的个数等于 5+2+1=8。
所以递归代码如下:
#include<bits/stdc++.h>
using namespace std;
//计算n!中有多少个质因子
int cal(int n,int p) {
if(n<p) return 0;//n<p是1~n中不可能有质因子p
return n/p+cal(n/p,p);//返回n/p加上(n/p)!中质因子p的个数
}
int main() {
int n,m;
cin>>n>>m;
int res=cal(n,m);
cout<<res<<endl;
return 0;
}