1 - 极限
文章目录
一、函数的极限与连续
1.应用 常用等价无穷小 及其推广
x
→
0
x \rightarrow 0
x→0 时常用等价无穷小:
s
i
n
x
∼
x
t
a
n
x
∼
x
a
r
c
s
i
n
x
∼
x
ln
(
1
+
x
)
∼
x
e
x
−
1
∼
x
a
x
−
1
∼
x
ln
a
1
−
c
o
s
a
x
∼
a
2
x
2
(
1
+
x
)
a
−
1
∼
a
x
sinx \sim x \qquad tanx \sim x \qquad arcsinx \sim x \\ \ln(1+x) \sim x \qquad e^{x}-1 \sim x \qquad a^{x}-1 \sim x \ln a \\ 1-cos^{a}x \sim \frac{a}{2}x^{2} \qquad (1+x)^{a}-1 \sim ax
sinx∼xtanx∼xarcsinx∼xln(1+x)∼xex−1∼xax−1∼xlna1−cosax∼2ax2(1+x)a−1∼ax
推广1: x替换为趋近于0的函数,整体代换后依旧成立
推广2:
x
→
0
时, 若
α
(
x
)
→
0
,
则
(
1
+
x
)
α
−
1
∼
α
x
⟹
(
1
+
x
)
α
(
x
)
−
1
∼
α
(
x
)
x
x \rightarrow 0 \text{ 时, 若}\alpha (x) \rightarrow 0,则 \\ (1+x)^{\alpha}-1 \sim \alpha x \implies (1+x)^{\alpha (x)}-1 \sim \alpha(x)x
x→0 时, 若α(x)→0,则(1+x)α−1∼αx⟹(1+x)α(x)−1∼α(x)x
等价无穷小替换定理:
设
α
(
x
)
、
β
(
x
)
、
α
~
(
x
)
、
β
~
(
x
)
\alpha(x)、\beta(x)、\tilde{\alpha}(x)、\tilde{\beta}(x)
α(x)、β(x)、α~(x)、β~(x) 都是同一自变量变化过程中的无穷小量,且
α
(
x
)
∼
α
~
(
x
)
,
β
(
x
)
∼
β
~
(
x
)
\alpha(x) \sim \tilde{\alpha}(x), \beta(x) \sim \tilde{\beta}(x)
α(x)∼α~(x),β(x)∼β~(x),则
lim
α
(
x
)
f
(
x
)
β
(
x
)
g
(
x
)
=
lim
α
~
(
x
)
f
(
x
)
β
(
x
)
g
(
x
)
=
lim
α
(
x
)
f
(
x
)
β
~
(
x
)
g
(
x
)
=
lim
α
~
(
x
)
f
(
x
)
β
~
(
x
)
g
(
x
)
\lim \frac{\alpha(x)f(x)}{\beta(x)g(x)}=\lim \frac{\tilde\alpha(x)f(x)}{\beta(x)g(x)}=\lim \frac{\alpha(x)f(x)}{\tilde\beta(x)g(x)}=\lim \frac{\tilde\alpha(x)f(x)}{\tilde\beta(x)g(x)}
limβ(x)g(x)α(x)f(x)=limβ(x)g(x)α~(x)f(x)=limβ~(x)g(x)α(x)f(x)=limβ~(x)g(x)α~(x)f(x)
【注】 lim x → ∞ e − x ⋅ e x 2 ln ( 1 + 1 x ) \lim_{x\rightarrow \infty} e^{-x}\cdot e^{x^{2}\ln(1+\frac{1}{x})} limx→∞e−x⋅ex2ln(1+x1),不可以直接对 x 2 ln ( 1 + 1 x ) x^{2}\ln(1+\frac{1}{x}) x2ln(1+x1) 用等价无穷小,因为这里的指数实际上是 x 2 ln ( 1 + 1 x ) − x x^{2}\ln(1+\frac{1}{x})-x x2ln(1+x1)−x
【注】 处理函数中的简化计算
分式无论在什么位置,比如
e
A
(
x
)
B
(
x
)
e^{\frac{A(x)}{B(x)}}
eB(x)A(x) ,只要是个完整的分式,满足洛必达或等价无穷小替换定理,就可以对分式单独使用洛必达法则或等价无穷小替换定理
2. 泰勒公式(很万能)
用于在某一个点处,用
x
x
x 的多项式去逼近原函数,可以一直逼近到多项式与原函数划等号
x
0
=
0
x_{0}=0
x0=0 时称为 麦克劳林公式
相比较于原函数,泰勒展开后的多项式更好做无穷小比阶
在
x
0
x_{0}
x0 处展的泰勒展开:
f
(
x
)
=
∑
k
=
0
∞
f
(
k
)
(
x
0
)
k
!
(
x
−
x
0
)
k
f
(
x
)
=
f
(
x
0
)
+
f
′
(
x
0
)
(
x
−
x
0
)
+
1
2
!
f
′
′
(
x
0
)
(
x
−
x
0
)
2
+
⋯
+
1
n
!
f
(
n
)
(
x
0
)
(
x
−
x
0
)
n
+
<
余项
>
f(x)=\sum_{k=0}^{\infty}\frac{f^{(k)}(x_{0})}{k!}(x-x_{0})^{k} \\ f(x) = f(x_{0})+f^{\prime}(x_{0})(x-x_{0})+\frac{1}{2!}f^{\prime\prime}(x_{0})(x-x_{0})^{2}+\cdots+\frac{1}{n!}f^{(n)}(x_{0})(x-x_{0})^{n}+<余项>
f(x)=k=0∑∞k!f(k)(x0)(x−x0)kf(x)=f(x0)+f′(x0)(x−x0)+2!1f′′(x0)(x−x0)2+⋯+n!1f(n)(x0)(x−x0)n+<余项>
拉格朗日余项:
f
(
n
+
1
)
(
ξ
)
(
n
+
1
)
!
(
x
−
x
0
)
n
\frac{f^{(n+1)}(\xi)}{(n+1)!}(x-x_{0})^{n}
(n+1)!f(n+1)(ξ)(x−x0)n
ξ
在
x
和
x
0
之间
\xi 在 x 和 x_{0}之间
ξ在x和x0之间
皮亚诺余项:
o
(
(
x
−
x
0
)
n
)
o((x-x_{0})^{n})
o((x−x0)n)
即
(
x
−
x
0
)
n
(x-x_{0})^{n}
(x−x0)n 的高阶无穷小
3.复合无穷小结论
当 x → 0 x \rightarrow 0 x→0 时,若 f ( x ) ∼ a x m , g ( x ) ∼ b x n f(x) \sim ax^{m},g(x)\sim bx^{n} f(x)∼axm,g(x)∼bxn,且 f ( x ) , g ( x ) , a , b f(x),g(x),a,b f(x),g(x),a,b 均不为 0 ,则 f [ g ( x ) ] ∼ a b m x m n ( x → 0 ) f[g(x)]\sim ab^{m}x^{mn} \ (x \rightarrow0) f[g(x)]∼abmxmn (x→0)
4.分子有理化 + 等价无穷小
例如:
1
+
t
a
n
(
x
)
−
1
+
s
i
n
(
x
)
(
x
→
0
+
)
=
t
a
n
x
−
s
i
n
x
1
+
t
a
n
(
x
)
+
1
+
s
i
n
(
x
)
//此时为‘
0
2
’,所以分母可以直接取极限
∼
t
a
n
x
−
s
i
n
x
2
=
1
2
t
a
n
x
(
1
−
c
o
s
x
)
∼
1
4
(
x
)
3
//两个常用等价无穷小
\begin{aligned} &\sqrt{1+tan(\sqrt x)} - \sqrt{1+sin(\sqrt x)} \qquad (x \rightarrow0^{+}) \\ =& \frac{tan\sqrt x-sin\sqrt x}{\sqrt{1+tan(\sqrt x)} + \sqrt{1+sin(\sqrt x)}} \qquad \text{//此时为‘}\frac{0}{2}\text{',所以分母可以直接取极限} \\ \sim & \frac{tan\sqrt x-sin\sqrt x}{2} \\ =& \frac{1}{2}tan\sqrt x (1-cos\sqrt x) \\ \sim & \frac{1}{4}(\sqrt x)^{3} \qquad \text{ //两个常用等价无穷小} \end{aligned}
=∼=∼1+tan(x)−1+sin(x)(x→0+)1+tan(x)+1+sin(x)tanx−sinx//此时为‘20’,所以分母可以直接取极限2tanx−sinx21tanx(1−cosx)41(x)3 //两个常用等价无穷小
5.用中值定理处理
例如:
∫
s
i
n
x
x
3
+
t
2
d
t
x
(
e
x
2
−
1
)
(
x
→
0
)
=
3
+
ξ
2
(
x
−
s
i
n
x
)
x
3
//分子处用了中值定理,分母处是常用等价无穷小的推广
,
ξ
介于
x
和
s
i
n
x
之间
=
3
+
ξ
2
1
6
x
3
x
3
/
/
(
x
−
s
i
n
x
)
∼
1
6
x
3
可用泰勒公式证明
=
lim
ξ
→
0
3
+
ξ
2
6
=
3
6
\begin{aligned} &\frac{\int _{sinx}^{x} \sqrt{3+t^{2}}dt}{x(e^{x^{2}}-1)}\qquad (x\rightarrow0) \\ =&\frac{\sqrt{3+\xi^{2}}(x-sinx)}{x^{3}} \qquad \text{//分子处用了中值定理,分母处是常用等价无穷小的推广},\xi \ 介于\ x\ 和\ sinx\ 之间 \\ =& \frac{\sqrt{3+\xi^{2}}\frac{1}{6}x^{3}}{x^{3}} \qquad \qquad //(x-sinx)\sim \frac{1}{6}x^{3} \ 可用泰勒公式证明 \\ =&\lim_{\xi \rightarrow0}\frac{\sqrt{3+\xi^{2}}}{6} = \frac{\sqrt{3}}{6} \end{aligned}
===x(ex2−1)∫sinxx3+t2dt(x→0)x33+ξ2(x−sinx)//分子处用了中值定理,分母处是常用等价无穷小的推广,ξ 介于 x 和 sinx 之间x33+ξ261x3//(x−sinx)∼61x3 可用泰勒公式证明ξ→0lim63+ξ2=63
6.分解分式 + 同时求极限
比较复杂的分式可以分成多个相乘的分式,然后同时求极限
7.常用不等式 + 夹逼定理
常用不等式天然的描述了函数之间的关系,适合使用夹逼定理来求极限
二、数列极限
1. 一般处理步骤
-
通过常用不等式或函数比大小,建立基本的函数关系
函数比大小:如需要证明 f ( x ) > g ( x ) f(x)>g(x) f(x)>g(x) 时,可以令 φ ( x ) = f ( x ) − g ( x ) \varphi(x) = f(x)-g(x) φ(x)=f(x)−g(x) 然后用求导等方法证明 φ ( x ) ≥ 0 \varphi(x) \geq0 φ(x)≥0
-
求极限、定界
- 有上界 且 有下界,则考虑使用夹逼定理求极限
- 只有上界或只有下界,则进入步骤三
-
证明函数单调,利用单调有界准则证明极限存在
证明函数单调的基本方法
- 数学归纳法
- 中值定理
- 求导
-
设极限值,代回方程求极限
∵ 极限存在 ∴ 设 lim n → ∞ x n = lim n → ∞ x n + 1 = a ⋯ ⋯ / / x n = x n + 1 = a 代回方程求 a \begin{aligned} &\because 极限存在 \\ &\therefore 设 \lim _{n\rightarrow\infty}x_{n} = \lim _{n\rightarrow\infty}x_{n+1} =a \\ & \cdots\cdots \\ & //x_{n}=x_{n+1}=a\ 代回方程求 \ a \end{aligned} ∵极限存在∴设n→∞limxn=n→∞limxn+1=a⋯⋯//xn=xn+1=a 代回方程求 a
2. 对高次函数的处理
- 方程的等号两端同取 ln \ln ln
- 将 f ( x ) f(x) f(x) 化为 e ln ( f ( x ) ) e^{\ln(f(x))} eln(f(x)) 的形式,然后针对 ln f ( x ) \ln f(x) lnf(x) 处理
- 求 lim A \lim A limA 也可以改为求 lim ln ( A ) \lim \ln(A) limln(A)
【附1】常用不等式
- ∣ a + b ∣ ≤ ∣ a ∣ + ∣ b ∣ |a + b|\leq|a|+|b| ∣a+b∣≤∣a∣+∣b∣
- ∣ ∣ a ∣ − ∣ b ∣ ∣ ≤ ∣ a − b ∣ ||a|-|b||\leq |a-b| ∣∣a∣−∣b∣∣≤∣a−b∣
- ( a 2 + b 2 ) 2 ≥ a + b 2 ≥ a b , ( a , b > 0 ) \sqrt{\frac{(a^{2}+b^{2})}{2}} \geq \frac{a+b}{2}\geq\sqrt{ab},\qquad(a,b>0) 2(a2+b2)≥2a+b≥ab,(a,b>0)
- t a n x > x > s i n x , ( 0 < x < π 2 ) tanx>x>sinx,\qquad(0<x<\frac{\pi}{2}) tanx>x>sinx,(0<x<2π)
- a r c t a n x ≤ x ≤ a r c s i n x , ( 0 ≤ x ≤ 1 ) arctanx\leq x\leq arcsinx, \qquad(0\leq x\leq 1) arctanx≤x≤arcsinx,(0≤x≤1)
- e x ≥ x + 1 e^{x}\geq x+1 ex≥x+1
- x − 1 ≥ ln x , ( x > 0 ) x-1\geq\ln x,\qquad(x>0) x−1≥lnx,(x>0)
- x 1 + x < ln ( 1 + x ) < x , ( x > 0 ) \frac{x}{1+x}<\ln(1+x)<x,\qquad(x>0) 1+xx<ln(1+x)<x,(x>0)
【附2】四种间断点
名称 | 条件 |
---|---|
可去间断点 | lim x → x 0 − f ( x ) = lim x → x 0 + f ( x ) ≠ f ( x 0 ) 或 f ( x 0 ) 不存在 \lim_{x\rightarrow x_0^-}f(x)=\lim_{x\rightarrow x_0^+}f(x)\neq f(x_0) 或 f(x_0)不存在 limx→x0−f(x)=limx→x0+f(x)=f(x0)或f(x0)不存在 |
跳跃间断点 | lim x → x 0 − f ( x ) ≠ lim x → x 0 + f ( x ) \lim_{x\rightarrow x_0^-}f(x)\neq\lim_{x\rightarrow x_0^+}f(x) limx→x0−f(x)=limx→x0+f(x) |
无穷间断点 | lim x → x 0 − f ( x ) 或 lim x → x 0 + f ( x ) \lim_{x\rightarrow x_0^-}f(x)或\lim_{x\rightarrow x_0^+}f(x) limx→x0−f(x)或limx→x0+f(x) 极限值为无穷 |
振荡间断点 | lim x → x 0 − f ( x ) 或 lim x → x 0 + f ( x ) \lim_{x\rightarrow x_0^-}f(x)或\lim_{x\rightarrow x_0^+}f(x) limx→x0−f(x)或limx→x0+f(x) 极限值不存在 |