1 - 极限

1 - 极限

一、函数的极限与连续

1.应用 常用等价无穷小 及其推广

x → 0 x \rightarrow 0 x0 时常用等价无穷小:
s i n x ∼ x t a n x ∼ x a r c s i n x ∼ x ln ⁡ ( 1 + x ) ∼ x e x − 1 ∼ x a x − 1 ∼ x ln ⁡ a 1 − c o s a x ∼ a 2 x 2 ( 1 + x ) a − 1 ∼ a x sinx \sim x \qquad tanx \sim x \qquad arcsinx \sim x \\ \ln(1+x) \sim x \qquad e^{x}-1 \sim x \qquad a^{x}-1 \sim x \ln a \\ 1-cos^{a}x \sim \frac{a}{2}x^{2} \qquad (1+x)^{a}-1 \sim ax sinxxtanxxarcsinxxln(1+x)xex1xax1xlna1cosax2ax2(1+x)a1ax
推广1: x替换为趋近于0的函数,整体代换后依旧成立

推广2
x → 0  时, 若 α ( x ) → 0 , 则 ( 1 + x ) α − 1 ∼ α x    ⟹    ( 1 + x ) α ( x ) − 1 ∼ α ( x ) x x \rightarrow 0 \text{ 时, 若}\alpha (x) \rightarrow 0,则 \\ (1+x)^{\alpha}-1 \sim \alpha x \implies (1+x)^{\alpha (x)}-1 \sim \alpha(x)x x0 α(x)0,(1+x)α1αx(1+x)α(x)1α(x)x
等价无穷小替换定理

α ( x ) 、 β ( x ) 、 α ~ ( x ) 、 β ~ ( x ) \alpha(x)、\beta(x)、\tilde{\alpha}(x)、\tilde{\beta}(x) α(x)β(x)α~(x)β~(x) 都是同一自变量变化过程中的无穷小量,且 α ( x ) ∼ α ~ ( x ) , β ( x ) ∼ β ~ ( x ) \alpha(x) \sim \tilde{\alpha}(x), \beta(x) \sim \tilde{\beta}(x) α(x)α~(x),β(x)β~(x),则
lim ⁡ α ( x ) f ( x ) β ( x ) g ( x ) = lim ⁡ α ~ ( x ) f ( x ) β ( x ) g ( x ) = lim ⁡ α ( x ) f ( x ) β ~ ( x ) g ( x ) = lim ⁡ α ~ ( x ) f ( x ) β ~ ( x ) g ( x ) \lim \frac{\alpha(x)f(x)}{\beta(x)g(x)}=\lim \frac{\tilde\alpha(x)f(x)}{\beta(x)g(x)}=\lim \frac{\alpha(x)f(x)}{\tilde\beta(x)g(x)}=\lim \frac{\tilde\alpha(x)f(x)}{\tilde\beta(x)g(x)} limβ(x)g(x)α(x)f(x)=limβ(x)g(x)α~(x)f(x)=limβ~(x)g(x)α(x)f(x)=limβ~(x)g(x)α~(x)f(x)

【注】 lim ⁡ x → ∞ e − x ⋅ e x 2 ln ⁡ ( 1 + 1 x ) \lim_{x\rightarrow \infty} e^{-x}\cdot e^{x^{2}\ln(1+\frac{1}{x})} limxexex2ln(1+x1),不可以直接对 x 2 ln ⁡ ( 1 + 1 x ) x^{2}\ln(1+\frac{1}{x}) x2ln(1+x1) 用等价无穷小,因为这里的指数实际上是 x 2 ln ⁡ ( 1 + 1 x ) − x x^{2}\ln(1+\frac{1}{x})-x x2ln(1+x1)x

【注】 处理函数中的简化计算
分式无论在什么位置,比如 e A ( x ) B ( x ) e^{\frac{A(x)}{B(x)}} eB(x)A(x) ,只要是个完整的分式,满足洛必达或等价无穷小替换定理,就可以对分式单独使用洛必达法则或等价无穷小替换定理

2. 泰勒公式(很万能)

用于在某一个点处,用 x x x 的多项式去逼近原函数,可以一直逼近到多项式与原函数划等号
x 0 = 0 x_{0}=0 x0=0 时称为 麦克劳林公式
相比较于原函数,泰勒展开后的多项式更好做无穷小比阶

x 0 x_{0} x0 处展的泰勒展开:
f ( x ) = ∑ k = 0 ∞ f ( k ) ( x 0 ) k ! ( x − x 0 ) k f ( x ) = f ( x 0 ) + f ′ ( x 0 ) ( x − x 0 ) + 1 2 ! f ′ ′ ( x 0 ) ( x − x 0 ) 2 + ⋯ + 1 n ! f ( n ) ( x 0 ) ( x − x 0 ) n + < 余项 > f(x)=\sum_{k=0}^{\infty}\frac{f^{(k)}(x_{0})}{k!}(x-x_{0})^{k} \\ f(x) = f(x_{0})+f^{\prime}(x_{0})(x-x_{0})+\frac{1}{2!}f^{\prime\prime}(x_{0})(x-x_{0})^{2}+\cdots+\frac{1}{n!}f^{(n)}(x_{0})(x-x_{0})^{n}+<余项> f(x)=k=0k!f(k)(x0)(xx0)kf(x)=f(x0)+f(x0)(xx0)+2!1f′′(x0)(xx0)2++n!1f(n)(x0)(xx0)n+<余项>
拉格朗日余项: f ( n + 1 ) ( ξ ) ( n + 1 ) ! ( x − x 0 ) n \frac{f^{(n+1)}(\xi)}{(n+1)!}(x-x_{0})^{n} (n+1)!f(n+1)(ξ)(xx0)n
ξ 在 x 和 x 0 之间 \xi 在 x 和 x_{0}之间 ξxx0之间

皮亚诺余项: o ( ( x − x 0 ) n ) o((x-x_{0})^{n}) o((xx0)n)
( x − x 0 ) n (x-x_{0})^{n} (xx0)n 的高阶无穷小

3.复合无穷小结论

x → 0 x \rightarrow 0 x0 时,若 f ( x ) ∼ a x m , g ( x ) ∼ b x n f(x) \sim ax^{m},g(x)\sim bx^{n} f(x)axm,g(x)bxn,且 f ( x ) , g ( x ) , a , b f(x),g(x),a,b f(x),g(x),a,b 均不为 0 ,则 f [ g ( x ) ] ∼ a b m x m n   ( x → 0 ) f[g(x)]\sim ab^{m}x^{mn} \ (x \rightarrow0) f[g(x)]abmxmn (x0)

4.分子有理化 + 等价无穷小

例如:
1 + t a n ( x ) − 1 + s i n ( x ) ( x → 0 + ) = t a n x − s i n x 1 + t a n ( x ) + 1 + s i n ( x ) //此时为‘ 0 2 ’,所以分母可以直接取极限 ∼ t a n x − s i n x 2 = 1 2 t a n x ( 1 − c o s x ) ∼ 1 4 ( x ) 3  //两个常用等价无穷小 \begin{aligned} &\sqrt{1+tan(\sqrt x)} - \sqrt{1+sin(\sqrt x)} \qquad (x \rightarrow0^{+}) \\ =& \frac{tan\sqrt x-sin\sqrt x}{\sqrt{1+tan(\sqrt x)} + \sqrt{1+sin(\sqrt x)}} \qquad \text{//此时为‘}\frac{0}{2}\text{',所以分母可以直接取极限} \\ \sim & \frac{tan\sqrt x-sin\sqrt x}{2} \\ =& \frac{1}{2}tan\sqrt x (1-cos\sqrt x) \\ \sim & \frac{1}{4}(\sqrt x)^{3} \qquad \text{ //两个常用等价无穷小} \end{aligned} ==1+tan(x ) 1+sin(x ) (x0+)1+tan(x ) +1+sin(x ) tanx sinx //此时为20’,所以分母可以直接取极限2tanx sinx 21tanx (1cosx )41(x )3 //两个常用等价无穷小

5.用中值定理处理

例如:
∫ s i n x x 3 + t 2 d t x ( e x 2 − 1 ) ( x → 0 ) = 3 + ξ 2 ( x − s i n x ) x 3 //分子处用了中值定理,分母处是常用等价无穷小的推广 , ξ  介于  x  和  s i n x  之间 = 3 + ξ 2 1 6 x 3 x 3 / / ( x − s i n x ) ∼ 1 6 x 3  可用泰勒公式证明 = lim ⁡ ξ → 0 3 + ξ 2 6 = 3 6 \begin{aligned} &\frac{\int _{sinx}^{x} \sqrt{3+t^{2}}dt}{x(e^{x^{2}}-1)}\qquad (x\rightarrow0) \\ =&\frac{\sqrt{3+\xi^{2}}(x-sinx)}{x^{3}} \qquad \text{//分子处用了中值定理,分母处是常用等价无穷小的推广},\xi \ 介于\ x\ 和\ sinx\ 之间 \\ =& \frac{\sqrt{3+\xi^{2}}\frac{1}{6}x^{3}}{x^{3}} \qquad \qquad //(x-sinx)\sim \frac{1}{6}x^{3} \ 可用泰勒公式证明 \\ =&\lim_{\xi \rightarrow0}\frac{\sqrt{3+\xi^{2}}}{6} = \frac{\sqrt{3}}{6} \end{aligned} ===x(ex21)sinxx3+t2 dt(x0)x33+ξ2 (xsinx)//分子处用了中值定理,分母处是常用等价无穷小的推广,ξ 介于 x  sinx 之间x33+ξ2 61x3//(xsinx)61x3 可用泰勒公式证明ξ0lim63+ξ2 =63

6.分解分式 + 同时求极限

比较复杂的分式可以分成多个相乘的分式,然后同时求极限

7.常用不等式 + 夹逼定理

常用不等式天然的描述了函数之间的关系,适合使用夹逼定理来求极限

二、数列极限

1. 一般处理步骤

  1. 通过常用不等式或函数比大小,建立基本的函数关系

    函数比大小:如需要证明 f ( x ) > g ( x ) f(x)>g(x) f(x)>g(x) 时,可以令 φ ( x ) = f ( x ) − g ( x ) \varphi(x) = f(x)-g(x) φ(x)=f(x)g(x) 然后用求导等方法证明 φ ( x ) ≥ 0 \varphi(x) \geq0 φ(x)0

  2. 求极限、定界

    1. 有上界 且 有下界,则考虑使用夹逼定理求极限
    2. 只有上界或只有下界,则进入步骤三
  3. 证明函数单调,利用单调有界准则证明极限存在

    证明函数单调的基本方法

    1. 数学归纳法
    2. 中值定理
    3. 求导
  4. 设极限值,代回方程求极限
    ∵ 极限存在 ∴ 设 lim ⁡ n → ∞ x n = lim ⁡ n → ∞ x n + 1 = a ⋯ ⋯ / / x n = x n + 1 = a  代回方程求  a \begin{aligned} &\because 极限存在 \\ &\therefore 设 \lim _{n\rightarrow\infty}x_{n} = \lim _{n\rightarrow\infty}x_{n+1} =a \\ & \cdots\cdots \\ & //x_{n}=x_{n+1}=a\ 代回方程求 \ a \end{aligned} 极限存在nlimxn=nlimxn+1=a⋯⋯//xn=xn+1=a 代回方程求 a

2. 对高次函数的处理

  1. 方程的等号两端同取 ln ⁡ \ln ln
  2. f ( x ) f(x) f(x) 化为 e ln ⁡ ( f ( x ) ) e^{\ln(f(x))} eln(f(x)) 的形式,然后针对 ln ⁡ f ( x ) \ln f(x) lnf(x) 处理
  3. lim ⁡ A \lim A limA 也可以改为求 lim ⁡ ln ⁡ ( A ) \lim \ln(A) limln(A)

【附1】常用不等式

  1. ∣ a + b ∣ ≤ ∣ a ∣ + ∣ b ∣ |a + b|\leq|a|+|b| a+ba+b
  2. ∣ ∣ a ∣ − ∣ b ∣ ∣ ≤ ∣ a − b ∣ ||a|-|b||\leq |a-b| ∣∣ab∣∣ab
  3. ( a 2 + b 2 ) 2 ≥ a + b 2 ≥ a b , ( a , b > 0 ) \sqrt{\frac{(a^{2}+b^{2})}{2}} \geq \frac{a+b}{2}\geq\sqrt{ab},\qquad(a,b>0) 2(a2+b2) 2a+bab ,(a,b>0)
  4. t a n x > x > s i n x , ( 0 < x < π 2 ) tanx>x>sinx,\qquad(0<x<\frac{\pi}{2}) tanx>x>sinx,(0<x<2π)
  5. a r c t a n x ≤ x ≤ a r c s i n x , ( 0 ≤ x ≤ 1 ) arctanx\leq x\leq arcsinx, \qquad(0\leq x\leq 1) arctanxxarcsinx,(0x1)
  6. e x ≥ x + 1 e^{x}\geq x+1 exx+1
  7. x − 1 ≥ ln ⁡ x , ( x > 0 ) x-1\geq\ln x,\qquad(x>0) x1lnx,(x>0)
  8. x 1 + x < ln ⁡ ( 1 + x ) < x , ( x > 0 ) \frac{x}{1+x}<\ln(1+x)<x,\qquad(x>0) 1+xx<ln(1+x)<x,(x>0)

【附2】四种间断点

名称条件
可去间断点 lim ⁡ x → x 0 − f ( x ) = lim ⁡ x → x 0 + f ( x ) ≠ f ( x 0 ) 或 f ( x 0 ) 不存在 \lim_{x\rightarrow x_0^-}f(x)=\lim_{x\rightarrow x_0^+}f(x)\neq f(x_0) 或 f(x_0)不存在 limxx0f(x)=limxx0+f(x)=f(x0)f(x0)不存在
跳跃间断点 lim ⁡ x → x 0 − f ( x ) ≠ lim ⁡ x → x 0 + f ( x ) \lim_{x\rightarrow x_0^-}f(x)\neq\lim_{x\rightarrow x_0^+}f(x) limxx0f(x)=limxx0+f(x)
无穷间断点 lim ⁡ x → x 0 − f ( x ) 或 lim ⁡ x → x 0 + f ( x ) \lim_{x\rightarrow x_0^-}f(x)或\lim_{x\rightarrow x_0^+}f(x) limxx0f(x)limxx0+f(x) 极限值为无穷
振荡间断点 lim ⁡ x → x 0 − f ( x ) 或 lim ⁡ x → x 0 + f ( x ) \lim_{x\rightarrow x_0^-}f(x)或\lim_{x\rightarrow x_0^+}f(x) limxx0f(x)limxx0+f(x) 极限值不存在
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值