人工智能经典论文
文章平均质量分 55
跟李沐老师读论文入门,记录论文笔记。
欢迎各位大佬,交流指正。
前行follow
learning sharing and discussing.
展开
-
小议深度学习
1. 全连接网络y=σ(wx)y = \sigma(wx)y=σ(wx)全连接网络可以认为是网络将样本的属性映射到另一个空间(一般是高维空间中),然后在高维空间中学习样本之间差异或者说样本属性的概率分布,从而学习每个样本的属性,理解样本的分布;然后才能在最后几层,对未知样本进行分类或者回归。2. 卷积网络卷积网络一开始出现主要为了处理图片数据的,因为如果把图片中的每一个像素当作一个维度(属性)的话,那么将图片送入全连接网络中,计算量是非常巨大的,甚至全连接网络无法运算。因此,卷积网络中提出了卷积原创 2021-12-10 19:00:00 · 2106 阅读 · 0 评论 -
读论文——GAN开山之作
第一遍标题:Generative Adversarial Nets作者:Ian J. Goodfellow, Jean Pouget-Abadie∗, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair†, Aaron Courville, Y oshua Bengio摘要:提出了一个通过对抗过程来估计生成模型的新框架同时训练两个模型:一个生成模型G;一个区分模型D,用来衡量一个样本来自训练集而不是G生成的概率。对于G来说就是让D犯原创 2021-11-25 19:30:00 · 227 阅读 · 0 评论 -
读论文方法
第一遍关注标题、摘要、结论。可以关注方法和实验部分重要的图和表确定值不值得阅读第二遍熟悉重要的图和表,知道每一部分在做什么圈出相关文献第三遍精读提出什么问题用什么方法解决问题实验怎么做的能够回忆起大概做了什么...原创 2021-11-24 19:30:00 · 254 阅读 · 0 评论