POJ 4123:马走日

题目

总时间限制: 1000ms 内存限制: 1024kB
描述
马在中国象棋以日字形规则移动。
请编写一段程序,给定n*m大小的棋盘,以及马的初始位置(x,y),要求不能重复经过棋盘上的同一个点,计算马可以有多少途径遍历棋盘上的所有点。
输入
第一行为整数T(T < 10),表示测试数据组数。
每一组测试数据包含一行,为四个整数,分别为棋盘的大小以及初始位置坐标n,m,x,y。(0<=x<=n-1,0<=y<=m-1, m < 10, n < 10)
输出
每组测试数据包含一行,为一个整数,表示马能遍历棋盘的途径总数,0为无法遍历一次。
样例输入
1
5 4 0 0
样例输出
32

思路

哈哈哈哈哈哈,一遍ac^_^
简单dfs,遍历所有方向的路径即可。

代码

def DFS(x, y, count, visited):
    global steps
    global total_count
    global direction
    if count == total_count:
        steps += 1
        return
    for dir in direction:
        if x + dir[0] >= 0 and x + dir[0] <= n - 1 and y + dir[1] >= 0 and y + dir[1] <= m - 1 and visited[x + dir[0]][y + dir[1]] == 0:
            visited[x + dir[0]][y + dir[1]] = 1
            DFS(x + dir[0], y + dir[1], count + 1, visited)
            visited[x + dir[0]][y + dir[1]] = 0
while True:
    try:
        T = int(input().strip())
        for _ in range(T):
            n, m, x, y = input().strip().split()
            n = int(n); m = int(m); x = int(x); y = int(y)
            visited = [[0 for i in range(m)] for j in range(n)]
            visited[x][y] = 1
            total_count = n * m
            steps = 0
            direction = [[-2, -1], [-1, -2], [-2, 1], [-1, 2], [2, 1], [1, 2], [1, -2], [2, -1]]
            for dir in direction:
                if x + dir[0] >= 0 and x + dir[0] <= n - 1 and y + dir[1] >= 0 and y + dir[1] <= m - 1 and visited[x + dir[0]][y + dir[1]] == 0:
                    visited[x + dir[0]][y + dir[1]] = 1
                    DFS(x + dir[0], y + dir[1], 2, visited)
                    visited[x + dir[0]][y + dir[1]] = 0
            print(steps)
    except:
        break
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值