LeetCode 53. Maximum Subarray

本文介绍了一种求解最大连续子数组和的有效算法。通过动态规划方法,使用dp数组记录以每个元素结尾的最大子数组和,最终找到全局最大值。以[-2,1,-3,4,-1,2,1,-5,4]为例,[4,-1,2,1]为最大和子数组。
摘要由CSDN通过智能技术生成

题目

Find the contiguous subarray within an array (containing at least one number) which has the largest sum.

For example, given the array [-2,1,-3,4,-1,2,1,-5,4],
the contiguous subarray [4,-1,2,1] has the largest sum = 6.

思路

用dp[i]表示用nums[i]结尾的最大连续子序列和。

代码

class Solution(object):
    def maxSubArray(self, nums):
        """
        :type nums: List[int]
        :rtype: int
        """
        dp = [0 for i in range(len(nums))]
        for i in range(len(nums)):
            dp[i] = nums[i] if i == 0 else max(dp[i - 1] +nums[i], nums[i])
        return max(dp)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值