基于深度学习的调制信号分类识别算法(毕设)

文章主要探讨基于深度学习的调制信号分类识别算法,强调理解神经网络结构和提出改进方法的重要性。关键在于设计新型神经网络以提升识别准确率和开发新的降噪技术。推荐使用Python进行程序实现,并提供RML2016.10a数据库资源以及pycharm作为开发工具。
摘要由CSDN通过智能技术生成

基于深度学习的调制信号分类识别算法是本人研究生期间重点研究的课题,这个题目需要从两个方面进行研究:调制信号分类识别是如何和神经网络进行结合的;使用怎样的神经网络可以提高调制信号分类识别的准确率。第一个方面在各大论文网站上下载几篇论文好好研读就可以掌握,第二个方面则是这个题目的重中之重,需要不断地学习和试验才能得出自己想要的答案。所谓厚积薄发,在研读大量论文之后,你就会发现他们的论文结构都是一样,介绍调制信号的类型,介绍神经网络,介绍本文所提出的新型神经网络,介绍本文的神经网络提高了多少的识别准确率,解决了哪些问题。

对于神经网络这一个模块,如果您想去了解深层次的东西,比如它是怎么运行的,它是怎么通过输入输出去分配权重等等问题,可以去看吴恩达的视频,或者去读一些CSDN或别的网站上的文章。但是如果您只想写这篇文章,我想您可以大概了解一下神经网络是什么,怎么使用就可以了。至于它是怎么修正自己,是怎么进行学习这一方面的内容您可以不用去了解,就把神经网络当做一个黑盒,只要需要添加,排列。所以重要的是您能提出一个新型的神经网络,不管你是用CNN、LSTM还是其他的神经网络,只要是您提出的这个网络在识别率上有提高,在算法复杂度上有进步,您的论文就完成了一半的工作量。

对于调制信号这一模块,可以从几个方面考虑。怎样对接收到的调制信号进行降噪处理,可不可以提出一个新的降噪方法。调制信号的数据从哪里寻找,我们一般试验都用RML2016.10a这个数据库,链接:https://pan.baidu.com/s/1zuVzL67ZvKqjsuHqH2tdOg ,提取码:02v7 ,有需要可以下载。调制信号怎么跟神经网路进行结合,这个属于一个简单的问题,读几篇文章就可以了解。所以最重要的就是思考降噪方法,如果您能提出一个新的降噪方法,那么本篇论文您又完成了一半的工作量。

另外一个非常重要的就是程序设计了。您可以天马行空的去结合各种的神经网络,提出各种的降噪方法,但是最终需要回归到您的程序上,您所提出的新想法到底有没有对调制信号的识别率有提高,那还是得看您所写的程序运行完毕之后所生成的图。如果您的这些新想法根本不能写成程序,那就更不用说了。本人推荐使用Python进行编写,shell就用pycharm。网上有大量的介绍,在这里我就不赘述了。

这是我研究生生涯的所研究的课题的一点小小的心得,如果您不幸选择了这个课题,那您可以按照我这个思路,重点研究这两个创新点,希望能够在您刚开始的时候给您指一条还算是可行的路,您完全可以有别的想法,这对于您来说是非常宝贵的,感谢您看到这里,在本文空间有本课题的本科论文,请您自行下载。如果您需要研究生期间的论文,请您私聊。

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值